如何在R中执行复杂的算术操作,从观测值之间减去指定百分比。

huangapple go评论57阅读模式
英文:

How to subtract the specified percentage between observations to perform complex arithmetic operations in R

问题

我需要为每个mdm组从d1数据集中减去perc列中指定的百分比值,其中perc列= 100(100始终是起始值)。例如,对于mdm=7,perc=100,其中price=77.8。接下来的perc值是99,即比77.8少1%,因此从77.8中减去1%得到77.022。perc=85,这意味着从起始点77.8中减去15% = 66.13,perc=50,这意味着从起始点减去50%。

同样,我需要将百分比相加,例如101,这意味着从价格=77.8中加1%(即78.578),从而形成价格列等等。

此外,具有mdm组的d2数据集中还有elast列的值,该值乘以100的下一个百分比。例如,当perc=99对于mdm=7时,值1.5必须乘以1(100*1.5=101.5),当perc=70时,乘以1.5的剩余百分比,即30*1.5(100-70=30)=45,然后加到100上得到145,依此类推。

最后一步对于d2数据集中的每个mdm是成本价。这意味着从已经形成的price列中减去成本值,例如,对于mdm=7,cost=24从价格(38.9-24=14.9)中减去,此值乘以count列中的值,即在这种情况下为175。这个操作创建了一个新的列profit=14.9\*175=2607

在这个可复制的示例中,我已经为样本填充了price列。在原始数据中,这个表格看起来像这样(实际上是d1数据集中的所需输出)。

初始数据如下:

   mdm perc price count
1    7   50    NA    NA
2    7   60    NA    NA
3    7   70    NA    NA
4    7   80    NA    NA
5    7   85    NA    NA
6    7   90    NA    NA
7    7   95    NA    NA
8    7   96    NA    NA
9    7   97    NA    NA
10   7   98    NA    NA
11   7   99    NA    NA
12   7  100  77.8   100
13   7  101    NA    NA
14   7  102    NA    NA
15   7  103    NA    NA
16   7  104    NA    NA
17   7  105    NA    NA
18   7  110    NA    NA
19   7  115    NA    NA
20   7  120    NA    NA
21   7  130    NA    NA
22   7  140    NA    NA
23   7  150    NA    NA
24   8   50    NA    NA
25   8   60    NA    NA
26   8   70    NA    NA
27   8   80    NA    NA
28   8   85    NA    NA
29   8   90    NA    NA
30   8   95    NA    NA
31   8   96    NA    NA
32   8   97    NA    NA
33   8   98    NA    NA
34   8   99    NA    NA
35   8  100  77.8   100
36   8  101    NA    NA
37   8  102    NA    NA
38   8  103    NA    NA
39   8  104    NA    NA
40   8  105    NA    NA
41   8  110    NA    NA
42   8  115    NA    NA
43   8  120    NA    NA
44   8  130    NA    NA
45   8  140    NA    NA
46   8  150    NA    NA

感谢您的宝贵帮助。

英文:

I have 2 datasets

    d1=structure(list(mdm = c(7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 8L, 8L, 8L, 
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 
8L, 8L, 8L, 8L), perc = c(50L, 60L, 70L, 80L, 85L, 90L, 95L, 
96L, 97L, 98L, 99L, 100L, 101L, 102L, 103L, 104L, 105L, 110L, 
115L, 120L, 130L, 140L, 150L, 50L, 60L, 70L, 80L, 85L, 90L, 95L, 
96L, 97L, 98L, 99L, 100L, 101L, 102L, 103L, 104L, 105L, 110L, 
115L, 120L, 130L, 140L, 150L), price = c(38.9, 46.68, 54.46, 
62.24, 66.13, 70.02, 73.91, 74.688, 75.466, 76.244, 77.022, 77.8, 
78.578, 79.356, 80.134, 80.912, 81.69, 85.58, 89.47, 93.36, 101.14, 
108.92, 116.7, 38.9, 46.68, 54.46, 62.24, 66.13, 70.02, 73.91, 
74.688, 75.466, 76.244, 77.022, 77.8, 78.578, 79.356, 80.134, 
80.912, 81.69, 85.58, 89.47, 93.36, 101.14, 108.92, 116.7), count = c(175, 
160, 145, 130, 122.5, 115, 107.5, 106, 104.5, 103, 101.5, 100, 
98.5, 97, 95.5, 94, 92.5, 85, 77.5, 70, 55, 40, 25, 175, 160, 
145, 130, 122.5, 115, 107.5, 106, 104.5, 103, 101.5, 100, 98.5, 
97, 95.5, 94, 92.5, 85, 77.5, 70, 55, 40, 25), profit = c(2607.5, 
3628.8, 4416.7, 4971.2, 5160.925, 5292.3, 5365.325, 5372.928, 
5378.197, 5381.132, 5381.733, 5380, 5375.933, 5369.532, 5360.797, 
5349.728, 5336.325, 5234.3, 5073.925, 4855.2, 4242.7, 3396.8, 
2317.5, 2432.5, 3468.8, 4271.7, 4841.2, 5038.425, 5177.3, 5257.825, 
5266.928, 5273.697, 5278.132, 5280.233, 5280, 5277.433, 5272.532, 
5265.297, 5255.728, 5243.825, 5149.3, 4996.425, 4785.2, 4187.7, 
3356.8, 2292.5)), class = "data.frame", row.names = c(NA, -46L
))

and second dataset represents the percentage values by which it is necessary to reduce or increase the value of price and count in d1 also d2 contains the cost column

    d2=structure(list(mdm = 7:8, elast = c(1.5, 1.5), cost = 24:25), class = "data.frame", row.names = c(NA, 
-2L))

I'm having some troubles with complex arithmetic and I need help.
I'll try to describe my question in more detail.

I need for each mdm group to subtract the percentage indicated in perc column from the price value, where the perc column = 100. (100 is always the start value.)
For example for mdm=7, perc=100 where price=77.8.
The next perc value is 99, i.e. less by 1, so subtract 1 percent from 77.8 and get 77.022. perc = 85, this means that from the starting point 77.8 we subtract 15% = 66.13, perc = 50, which means we subtract 50 percent from the starting point.
In a similar way, I need to add percentages up, for example 101, this means that 1 percent up from the price = 77.8 i.e. 78,578, thus forming the price column and so on.

Further, the price value with perc = 100 has a value in the count column, in this example it is also = 100 (but this is not always the case).

I need to take the value from the elast column for each mdm group from d2 dataset and this value is multiplied by the next percentage of 100. For example, where perc = 99 for mdm = 7, the value of 1.5 must be multiplied by 1 (100*1,5=101.5), where the value of perc = 70, then 30 * 1.5 (100-70=30) 30*1,5=45 100+45=145 and so on.

The last step for each mdm in data d2 there is the cost price. This means that from the already formed price column, we must subtract the cost value, for example, for mdm = 7, cost=24 from the price (38.9-24 = 14.9), this value is multiplied by the value in the count column, i.e. in this case 175. This action creates a new column profit=14.9*175=2607

In this reproducible example, the price column is all filled in by me for a sample. In raw data this table looks like this (indeed desired output in d1 dataset)
The initial data looks like this

   mdm perc price count
1    7   50    NA    NA
2    7   60    NA    NA
3    7   70    NA    NA
4    7   80    NA    NA
5    7   85    NA    NA
6    7   90    NA    NA
7    7   95    NA    NA
8    7   96    NA    NA
9    7   97    NA    NA
10   7   98    NA    NA
11   7   99    NA    NA
**12   7  100  77.8   100**
13   7  101    NA    NA
14   7  102    NA    NA
15   7  103    NA    NA
16   7  104    NA    NA
17   7  105    NA    NA
18   7  110    NA    NA
19   7  115    NA    NA
20   7  120    NA    NA
21   7  130    NA    NA
22   7  140    NA    NA
23   7  150    NA    NA
24   8   50    NA    NA
25   8   60    NA    NA
26   8   70    NA    NA
27   8   80    NA    NA
28   8   85    NA    NA
29   8   90    NA    NA
30   8   95    NA    NA
31   8   96    NA    NA
32   8   97    NA    NA
33   8   98    NA    NA
34   8   99    NA    NA
**35   8  100  77.8   100**
36   8  101    NA    NA
37   8  102    NA    NA
38   8  103    NA    NA
39   8  104    NA    NA
40   8  105    NA    NA
41   8  110    NA    NA
42   8  115    NA    NA
43   8  120    NA    NA
44   8  130    NA    NA
45   8  140    NA    NA
46   8  150    NA    NA

Thanks for your any valuable help.

答案1

得分: 3

以下是翻译好的部分:

"Here is one way:
First we join both dataframes,
then we define the rules as you describe in detail (therefore it is easy to translate to code :-).
I think most challenging and tricky thinking is to fix the price value at 100% -> in this case price[perc=100]. The rest is described by your fantastic explanation:

"这是一种方法:首先,我们将两个数据框连接起来,然后根据您详细描述的规则进行定义(因此很容易转换成代码 :-)。我认为最具挑战性和复杂的思考是将价格值固定在100% -> 在这种情况下是 `price[perc=100]`。其余部分由您精彩的解释描述:"

```"
"```"
" mdm  perc price count elast  cost last_step
   <int> <int> <dbl> <dbl> <dbl> <int>     <dbl>
 1     7    50  38.9  175    1.5    24     2607.
 2     7    60  46.7  160    1.5    24     3629.
 3     7    70  54.5  145    1.5    24     4417.
 4     7    80  62.2  130    1.5    24     4971.
 5     7    85  66.1  122.   1.5    24     5161.
 6     7    90  70.0  115    1.5    24     5292.
 7     7    95  73.9  108.   1.5    24     5365.
 8     7    96  74.7  106    1.5    24     5373.
 9     7    97  75.5  104.   1.5    24     5378.
10     7    98  76.2  103    1.5    24     5381."
"# … with 36 more rows
# ℹ Use `print(n = ...)` to see more rows

希望这有助于您的理解。

英文:

Here is one way:
First we join both dataframes,
then we define the rules as you describe in detail (therefore it is easy to translate to code :-).
I think most challenging and tricky thinking is to fix the price value at 100% -> in this case price[perc=100]. The rest is described by your fantastic explanation:

library(dplyr)

df %>% 
  left_join(d2, by="mdm") %>% 
  group_by(mdm) %>% 
  mutate(price = (price[perc==100]/100)*perc,
         count = (count[perc==100]+(elast* count[perc==100]-perc)),
         last_step = (price-cost)*count)
 mdm  perc price count elast  cost last_step
   <int> <int> <dbl> <dbl> <dbl> <int>     <dbl>
 1     7    50  38.9  175    1.5    24     2607.
 2     7    60  46.7  160    1.5    24     3629.
 3     7    70  54.5  145    1.5    24     4417.
 4     7    80  62.2  130    1.5    24     4971.
 5     7    85  66.1  122.   1.5    24     5161.
 6     7    90  70.0  115    1.5    24     5292.
 7     7    95  73.9  108.   1.5    24     5365.
 8     7    96  74.7  106    1.5    24     5373.
 9     7    97  75.5  104.   1.5    24     5378.
10     7    98  76.2  103    1.5    24     5381.
# … with 36 more rows
# ℹ Use `print(n = ...)` to see more rows

答案2

得分: 3

使用 data.table

library(data.table)
setDT(d1)[d2, c("price", "count", "cost") :=
  .((price[perc == 100]/100)*perc, count[perc == 100] +
   (elast* count[perc == 100]-perc), i.cost), on = .(mdm)]
d1[, last_step := (price - cost) * count]

输出

> head(d1)
   mdm perc price count   profit cost last_step
1:   7   50 38.90   200 2607.500   24   2980.00
2:   7   60 46.68   190 3628.800   24   4309.20
3:   7   70 54.46   180 4416.700   24   5482.80
4:   7   80 62.24   170 4971.200   24   6500.80
5:   7   85 66.13   165 5160.925   24   6951.45
6:   7   90 70.02   160 5292.300   24   7363.20
英文:

Using data.table

library(data.table)
setDT(d1)[d2, c("price", "count", "cost") :=
  .((price[perc == 100]/100)*perc, count[perc == 100] +
   (elast* count[perc == 100]-perc), i.cost), on = .(mdm)]
d1[, last_step := (price - cost) * count]

-output

> head(d1)
   mdm perc price count   profit cost last_step
1:   7   50 38.90   200 2607.500   24   2980.00
2:   7   60 46.68   190 3628.800   24   4309.20
3:   7   70 54.46   180 4416.700   24   5482.80
4:   7   80 62.24   170 4971.200   24   6500.80
5:   7   85 66.13   165 5160.925   24   6951.45
6:   7   90 70.02   160 5292.300   24   7363.20

答案3

得分: 2

以下是代码的翻译结果:

d1 %>% 
  group_by(mdm) %>% 
  mutate(price = price[perc==100]*(1-(100-perc)/100)) %>% 
  ungroup %>% 
  inner_join(d2, by="mdm") %>% 
  mutate(count = count[perc==100] + (100-perc)*elast, profit = count*(price-cost)) %>% 
  select(-c(elast,cost))

无法提供翻译结果,因为这是R语言代码,无需翻译。

英文:

You should be able to produce d1 from the original frame as follows:

d1 %>% 
  group_by(mdm) %>% 
  mutate(price = price[perc==100]*(1-(100-perc)/100)) %>% 
  ungroup %>% 
  inner_join(d2, by="mdm") %>% 
  mutate(count = count[perc==100] + (100-perc)*elast, profit = count*(price-cost)) %>% 
  select(-c(elast,cost))

Input:

d1 = structure(list(mdm = c(7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 8L, 8L, 8L, 
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 
8L, 8L, 8L, 8L), perc = c(50L, 60L, 70L, 80L, 85L, 90L, 95L, 
96L, 97L, 98L, 99L, 100L, 101L, 102L, 103L, 104L, 105L, 110L, 
115L, 120L, 130L, 140L, 150L, 50L, 60L, 70L, 80L, 85L, 90L, 95L, 
96L, 97L, 98L, 99L, 100L, 101L, 102L, 103L, 104L, 105L, 110L, 
115L, 120L, 130L, 140L, 150L), price = c(NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, 77.8, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 77.8, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA), count = c(NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, 100, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, 100, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA)), class = "data.frame", row.names = c(NA, 
-46L))

Output:

   mdm perc   price count   profit
1    7   50  38.900 175.0 2607.500
2    7   60  46.680 160.0 3628.800
3    7   70  54.460 145.0 4416.700
4    7   80  62.240 130.0 4971.200
5    7   85  66.130 122.5 5160.925
6    7   90  70.020 115.0 5292.300
7    7   95  73.910 107.5 5365.325
8    7   96  74.688 106.0 5372.928
9    7   97  75.466 104.5 5378.197
10   7   98  76.244 103.0 5381.132
11   7   99  77.022 101.5 5381.733
12   7  100  77.800 100.0 5380.000
13   7  101  78.578  98.5 5375.933
14   7  102  79.356  97.0 5369.532
15   7  103  80.134  95.5 5360.797
16   7  104  80.912  94.0 5349.728
17   7  105  81.690  92.5 5336.325
18   7  110  85.580  85.0 5234.300
19   7  115  89.470  77.5 5073.925
20   7  120  93.360  70.0 4855.200
21   7  130 101.140  55.0 4242.700
22   7  140 108.920  40.0 3396.800
23   7  150 116.700  25.0 2317.500
24   8   50  38.900 175.0 2432.500
25   8   60  46.680 160.0 3468.800
26   8   70  54.460 145.0 4271.700
27   8   80  62.240 130.0 4841.200
28   8   85  66.130 122.5 5038.425
29   8   90  70.020 115.0 5177.300
30   8   95  73.910 107.5 5257.825
31   8   96  74.688 106.0 5266.928
32   8   97  75.466 104.5 5273.697
33   8   98  76.244 103.0 5278.132
34   8   99  77.022 101.5 5280.233
35   8  100  77.800 100.0 5280.000
36   8  101  78.578  98.5 5277.433
37   8  102  79.356  97.0 5272.532
38   8  103  80.134  95.5 5265.297
39   8  104  80.912  94.0 5255.728
40   8  105  81.690  92.5 5243.825
41   8  110  85.580  85.0 5149.300
42   8  115  89.470  77.5 4996.425
43   8  120  93.360  70.0 4785.200
44   8  130 101.140  55.0 4187.700
45   8  140 108.920  40.0 3356.800
46   8  150 116.700  25.0 2292.500

huangapple
  • 本文由 发表于 2023年2月18日 20:30:18
  • 转载请务必保留本文链接:https://go.coder-hub.com/75493346.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定