英文:
How to subtract the specified percentage between observations to perform complex arithmetic operations in R
问题
我需要为每个mdm
组从d1
数据集中减去perc
列中指定的百分比值,其中perc
列= 100(100始终是起始值)。例如,对于mdm=7,perc=100
,其中price=77.8
。接下来的perc值是99,即比77.8少1%,因此从77.8中减去1%得到77.022。perc=85,这意味着从起始点77.8中减去15% = 66.13,perc=50,这意味着从起始点减去50%。
同样,我需要将百分比相加,例如101,这意味着从价格=77.8中加1%(即78.578),从而形成价格列等等。
此外,具有mdm
组的d2
数据集中还有elast
列的值,该值乘以100的下一个百分比。例如,当perc=99
对于mdm=7时,值1.5必须乘以1(100*1.5=101.5),当perc=70
时,乘以1.5的剩余百分比,即30*1.5(100-70=30)=45,然后加到100上得到145,依此类推。
最后一步对于d2
数据集中的每个mdm
是成本价。这意味着从已经形成的price
列中减去成本值,例如,对于mdm=7,cost=24
从价格(38.9-24=14.9)中减去,此值乘以count
列中的值,即在这种情况下为175。这个操作创建了一个新的列profit=14.9\*175=2607
。
在这个可复制的示例中,我已经为样本填充了price
列。在原始数据中,这个表格看起来像这样(实际上是d1
数据集中的所需输出)。
初始数据如下:
mdm perc price count
1 7 50 NA NA
2 7 60 NA NA
3 7 70 NA NA
4 7 80 NA NA
5 7 85 NA NA
6 7 90 NA NA
7 7 95 NA NA
8 7 96 NA NA
9 7 97 NA NA
10 7 98 NA NA
11 7 99 NA NA
12 7 100 77.8 100
13 7 101 NA NA
14 7 102 NA NA
15 7 103 NA NA
16 7 104 NA NA
17 7 105 NA NA
18 7 110 NA NA
19 7 115 NA NA
20 7 120 NA NA
21 7 130 NA NA
22 7 140 NA NA
23 7 150 NA NA
24 8 50 NA NA
25 8 60 NA NA
26 8 70 NA NA
27 8 80 NA NA
28 8 85 NA NA
29 8 90 NA NA
30 8 95 NA NA
31 8 96 NA NA
32 8 97 NA NA
33 8 98 NA NA
34 8 99 NA NA
35 8 100 77.8 100
36 8 101 NA NA
37 8 102 NA NA
38 8 103 NA NA
39 8 104 NA NA
40 8 105 NA NA
41 8 110 NA NA
42 8 115 NA NA
43 8 120 NA NA
44 8 130 NA NA
45 8 140 NA NA
46 8 150 NA NA
感谢您的宝贵帮助。
英文:
I have 2 datasets
d1=structure(list(mdm = c(7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 8L, 8L, 8L,
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L,
8L, 8L, 8L, 8L), perc = c(50L, 60L, 70L, 80L, 85L, 90L, 95L,
96L, 97L, 98L, 99L, 100L, 101L, 102L, 103L, 104L, 105L, 110L,
115L, 120L, 130L, 140L, 150L, 50L, 60L, 70L, 80L, 85L, 90L, 95L,
96L, 97L, 98L, 99L, 100L, 101L, 102L, 103L, 104L, 105L, 110L,
115L, 120L, 130L, 140L, 150L), price = c(38.9, 46.68, 54.46,
62.24, 66.13, 70.02, 73.91, 74.688, 75.466, 76.244, 77.022, 77.8,
78.578, 79.356, 80.134, 80.912, 81.69, 85.58, 89.47, 93.36, 101.14,
108.92, 116.7, 38.9, 46.68, 54.46, 62.24, 66.13, 70.02, 73.91,
74.688, 75.466, 76.244, 77.022, 77.8, 78.578, 79.356, 80.134,
80.912, 81.69, 85.58, 89.47, 93.36, 101.14, 108.92, 116.7), count = c(175,
160, 145, 130, 122.5, 115, 107.5, 106, 104.5, 103, 101.5, 100,
98.5, 97, 95.5, 94, 92.5, 85, 77.5, 70, 55, 40, 25, 175, 160,
145, 130, 122.5, 115, 107.5, 106, 104.5, 103, 101.5, 100, 98.5,
97, 95.5, 94, 92.5, 85, 77.5, 70, 55, 40, 25), profit = c(2607.5,
3628.8, 4416.7, 4971.2, 5160.925, 5292.3, 5365.325, 5372.928,
5378.197, 5381.132, 5381.733, 5380, 5375.933, 5369.532, 5360.797,
5349.728, 5336.325, 5234.3, 5073.925, 4855.2, 4242.7, 3396.8,
2317.5, 2432.5, 3468.8, 4271.7, 4841.2, 5038.425, 5177.3, 5257.825,
5266.928, 5273.697, 5278.132, 5280.233, 5280, 5277.433, 5272.532,
5265.297, 5255.728, 5243.825, 5149.3, 4996.425, 4785.2, 4187.7,
3356.8, 2292.5)), class = "data.frame", row.names = c(NA, -46L
))
and second dataset represents the percentage values by which it is necessary to reduce or increase the value of price
and count
in d1
also d2 contains the cost
column
d2=structure(list(mdm = 7:8, elast = c(1.5, 1.5), cost = 24:25), class = "data.frame", row.names = c(NA,
-2L))
I'm having some troubles with complex arithmetic and I need help.
I'll try to describe my question in more detail.
I need for each mdm
group to subtract the percentage indicated in perc
column from the price value, where the perc
column = 100. (100 is always the start value.)
For example for mdm=7, perc=100
where price=77.8
.
The next perc value is 99, i.e. less by 1, so subtract 1 percent from 77.8 and get 77.022. perc = 85, this means that from the starting point 77.8
we subtract 15% = 66.13, perc = 50, which means we subtract 50 percent from the starting point.
In a similar way, I need to add percentages up, for example 101, this means that 1 percent up from the price = 77.8 i.e. 78,578, thus forming the price column and so on.
Further, the price value with perc = 100
has a value in the count
column, in this example it is also = 100 (but this is not always the case).
I need to take the value from the elast
column for each mdm group from d2
dataset and this value is multiplied by the next percentage of 100. For example, where perc = 99 for mdm = 7, the value of 1.5 must be multiplied by 1 (100*1,5=101.5), where the value of perc = 70
, then 30 * 1.5 (100-70=30) 30*1,5=45 100+45=145 and so on.
The last step for each mdm in data d2
there is the cost price. This means that from the already formed price column
, we must subtract the cost value, for example, for mdm = 7, cost=24
from the price (38.9-24 = 14.9), this value is multiplied by the value in the count
column, i.e. in this case 175. This action creates a new column profit=14.9*175=2607
In this reproducible example, the price column is all filled in by me for a sample. In raw data this table looks like this (indeed desired output in d1 dataset
)
The initial data looks like this
mdm perc price count
1 7 50 NA NA
2 7 60 NA NA
3 7 70 NA NA
4 7 80 NA NA
5 7 85 NA NA
6 7 90 NA NA
7 7 95 NA NA
8 7 96 NA NA
9 7 97 NA NA
10 7 98 NA NA
11 7 99 NA NA
**12 7 100 77.8 100**
13 7 101 NA NA
14 7 102 NA NA
15 7 103 NA NA
16 7 104 NA NA
17 7 105 NA NA
18 7 110 NA NA
19 7 115 NA NA
20 7 120 NA NA
21 7 130 NA NA
22 7 140 NA NA
23 7 150 NA NA
24 8 50 NA NA
25 8 60 NA NA
26 8 70 NA NA
27 8 80 NA NA
28 8 85 NA NA
29 8 90 NA NA
30 8 95 NA NA
31 8 96 NA NA
32 8 97 NA NA
33 8 98 NA NA
34 8 99 NA NA
**35 8 100 77.8 100**
36 8 101 NA NA
37 8 102 NA NA
38 8 103 NA NA
39 8 104 NA NA
40 8 105 NA NA
41 8 110 NA NA
42 8 115 NA NA
43 8 120 NA NA
44 8 130 NA NA
45 8 140 NA NA
46 8 150 NA NA
Thanks for your any valuable help.
答案1
得分: 3
以下是翻译好的部分:
"Here is one way:
First we join both dataframes,
then we define the rules as you describe in detail (therefore it is easy to translate to code :-).
I think most challenging and tricky thinking is to fix the price value at 100% -> in this case price[perc=100]
. The rest is described by your fantastic explanation:
"这是一种方法:首先,我们将两个数据框连接起来,然后根据您详细描述的规则进行定义(因此很容易转换成代码 :-)。我认为最具挑战性和复杂的思考是将价格值固定在100% -> 在这种情况下是 `price[perc=100]`。其余部分由您精彩的解释描述:"
```"
"```"
" mdm perc price count elast cost last_step
<int> <int> <dbl> <dbl> <dbl> <int> <dbl>
1 7 50 38.9 175 1.5 24 2607.
2 7 60 46.7 160 1.5 24 3629.
3 7 70 54.5 145 1.5 24 4417.
4 7 80 62.2 130 1.5 24 4971.
5 7 85 66.1 122. 1.5 24 5161.
6 7 90 70.0 115 1.5 24 5292.
7 7 95 73.9 108. 1.5 24 5365.
8 7 96 74.7 106 1.5 24 5373.
9 7 97 75.5 104. 1.5 24 5378.
10 7 98 76.2 103 1.5 24 5381."
"# … with 36 more rows
# ℹ Use `print(n = ...)` to see more rows
希望这有助于您的理解。
英文:
Here is one way:
First we join both dataframes,
then we define the rules as you describe in detail (therefore it is easy to translate to code :-).
I think most challenging and tricky thinking is to fix the price value at 100% -> in this case price[perc=100]
. The rest is described by your fantastic explanation:
library(dplyr)
df %>%
left_join(d2, by="mdm") %>%
group_by(mdm) %>%
mutate(price = (price[perc==100]/100)*perc,
count = (count[perc==100]+(elast* count[perc==100]-perc)),
last_step = (price-cost)*count)
mdm perc price count elast cost last_step
<int> <int> <dbl> <dbl> <dbl> <int> <dbl>
1 7 50 38.9 175 1.5 24 2607.
2 7 60 46.7 160 1.5 24 3629.
3 7 70 54.5 145 1.5 24 4417.
4 7 80 62.2 130 1.5 24 4971.
5 7 85 66.1 122. 1.5 24 5161.
6 7 90 70.0 115 1.5 24 5292.
7 7 95 73.9 108. 1.5 24 5365.
8 7 96 74.7 106 1.5 24 5373.
9 7 97 75.5 104. 1.5 24 5378.
10 7 98 76.2 103 1.5 24 5381.
# … with 36 more rows
# ℹ Use `print(n = ...)` to see more rows
答案2
得分: 3
使用 data.table
library(data.table)
setDT(d1)[d2, c("price", "count", "cost") :=
.((price[perc == 100]/100)*perc, count[perc == 100] +
(elast* count[perc == 100]-perc), i.cost), on = .(mdm)]
d1[, last_step := (price - cost) * count]
输出
> head(d1)
mdm perc price count profit cost last_step
1: 7 50 38.90 200 2607.500 24 2980.00
2: 7 60 46.68 190 3628.800 24 4309.20
3: 7 70 54.46 180 4416.700 24 5482.80
4: 7 80 62.24 170 4971.200 24 6500.80
5: 7 85 66.13 165 5160.925 24 6951.45
6: 7 90 70.02 160 5292.300 24 7363.20
英文:
Using data.table
library(data.table)
setDT(d1)[d2, c("price", "count", "cost") :=
.((price[perc == 100]/100)*perc, count[perc == 100] +
(elast* count[perc == 100]-perc), i.cost), on = .(mdm)]
d1[, last_step := (price - cost) * count]
-output
> head(d1)
mdm perc price count profit cost last_step
1: 7 50 38.90 200 2607.500 24 2980.00
2: 7 60 46.68 190 3628.800 24 4309.20
3: 7 70 54.46 180 4416.700 24 5482.80
4: 7 80 62.24 170 4971.200 24 6500.80
5: 7 85 66.13 165 5160.925 24 6951.45
6: 7 90 70.02 160 5292.300 24 7363.20
答案3
得分: 2
以下是代码的翻译结果:
d1 %>%
group_by(mdm) %>%
mutate(price = price[perc==100]*(1-(100-perc)/100)) %>%
ungroup %>%
inner_join(d2, by="mdm") %>%
mutate(count = count[perc==100] + (100-perc)*elast, profit = count*(price-cost)) %>%
select(-c(elast,cost))
无法提供翻译结果,因为这是R语言代码,无需翻译。
英文:
You should be able to produce d1 from the original frame as follows:
d1 %>%
group_by(mdm) %>%
mutate(price = price[perc==100]*(1-(100-perc)/100)) %>%
ungroup %>%
inner_join(d2, by="mdm") %>%
mutate(count = count[perc==100] + (100-perc)*elast, profit = count*(price-cost)) %>%
select(-c(elast,cost))
Input:
d1 = structure(list(mdm = c(7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 8L, 8L, 8L,
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L,
8L, 8L, 8L, 8L), perc = c(50L, 60L, 70L, 80L, 85L, 90L, 95L,
96L, 97L, 98L, 99L, 100L, 101L, 102L, 103L, 104L, 105L, 110L,
115L, 120L, 130L, 140L, 150L, 50L, 60L, 70L, 80L, 85L, 90L, 95L,
96L, 97L, 98L, 99L, 100L, 101L, 102L, 103L, 104L, 105L, 110L,
115L, 120L, 130L, 140L, 150L), price = c(NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, 77.8, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 77.8,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA), count = c(NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, 100, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, 100, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA)), class = "data.frame", row.names = c(NA,
-46L))
Output:
mdm perc price count profit
1 7 50 38.900 175.0 2607.500
2 7 60 46.680 160.0 3628.800
3 7 70 54.460 145.0 4416.700
4 7 80 62.240 130.0 4971.200
5 7 85 66.130 122.5 5160.925
6 7 90 70.020 115.0 5292.300
7 7 95 73.910 107.5 5365.325
8 7 96 74.688 106.0 5372.928
9 7 97 75.466 104.5 5378.197
10 7 98 76.244 103.0 5381.132
11 7 99 77.022 101.5 5381.733
12 7 100 77.800 100.0 5380.000
13 7 101 78.578 98.5 5375.933
14 7 102 79.356 97.0 5369.532
15 7 103 80.134 95.5 5360.797
16 7 104 80.912 94.0 5349.728
17 7 105 81.690 92.5 5336.325
18 7 110 85.580 85.0 5234.300
19 7 115 89.470 77.5 5073.925
20 7 120 93.360 70.0 4855.200
21 7 130 101.140 55.0 4242.700
22 7 140 108.920 40.0 3396.800
23 7 150 116.700 25.0 2317.500
24 8 50 38.900 175.0 2432.500
25 8 60 46.680 160.0 3468.800
26 8 70 54.460 145.0 4271.700
27 8 80 62.240 130.0 4841.200
28 8 85 66.130 122.5 5038.425
29 8 90 70.020 115.0 5177.300
30 8 95 73.910 107.5 5257.825
31 8 96 74.688 106.0 5266.928
32 8 97 75.466 104.5 5273.697
33 8 98 76.244 103.0 5278.132
34 8 99 77.022 101.5 5280.233
35 8 100 77.800 100.0 5280.000
36 8 101 78.578 98.5 5277.433
37 8 102 79.356 97.0 5272.532
38 8 103 80.134 95.5 5265.297
39 8 104 80.912 94.0 5255.728
40 8 105 81.690 92.5 5243.825
41 8 110 85.580 85.0 5149.300
42 8 115 89.470 77.5 4996.425
43 8 120 93.360 70.0 4785.200
44 8 130 101.140 55.0 4187.700
45 8 140 108.920 40.0 3356.800
46 8 150 116.700 25.0 2292.500
通过集体智慧和协作来改善编程学习和解决问题的方式。致力于成为全球开发者共同参与的知识库,让每个人都能够通过互相帮助和分享经验来进步。
评论