正则表达式,匹配不定大小的变量字节组。

huangapple go评论64阅读模式
英文:

Regex, that matches variable grams sizes

问题

我想要捕获表示给定产品重量的字符串部分。具体来说,是"1kg"字符串或"500g"字符串。我需要捕获其中之一,以便可以轻松地在pandas.Series对象中进行交互。

我尝试过以下方法:

s.str.extract(r"(.kg)|(.g)", flags=re.IGNORECASE)

由于字符串前面的数字数量可能会有所不同,我想尝试不同的方法。

英文:

I have the following sample series

 s = pd.Series({0: 'Açúcar Refinado UNIÃO Pacote 1kg',
 1: 'Açúcar Refinado QUALITÁ Pacote 1Kg',
 2: 'Açúcar Refinado DA BARRA Pacote 1kg',
 3: 'Açúcar Refinado CARAVELAS Pacote 1kg',
 4: 'Açúcar Refinado GUARANI Pacote 1Kg',
 5: 'Açúcar Refinado Granulado Doçúcar UNIÃO Pacote 1kg',
 6: 'Açúcar Refinado Light UNIÃO Fit Pacote 500g',
 7: 'Açúcar Refinado Granulado Premium UNIÃO Pacote 1kg',
 8: 'Açúcar Refinado UNIÃO 1kg - Pacote com 10 Unidades',
 9: 'Açúcar Refinado Granulado em Cubos UNIÃO Pote 250g',
 10: 'Açúcar Refinado Granulado Premium Caravelas Pacote 1kg',
 11: 'Acucar Refinado Uniao 1kg'})

What I want to do is to capture the string part that represents the weights of the given products. In specific, the "1kg" string or the "500g" string.
I need to capture one or another, so I can easily interact through the pandas.Series object.

What I tried

s.str.extract(r"(.kg)|(.g)",flags = re.IGNORECASE)

Since the number of number before the string can vary I would like a different approach.

答案1

得分: 1

s.str.extract(r"(\d+.?\d*?k?g)",flags=re.IGNORECASE)

英文:

Use the following regex matching (assuming that the numeric part can be also a float number):

s.str.extract(r"(\d+\.?\d*?k?g)",flags=re.IGNORECASE)

       0
0    1kg
1    1Kg
2    1kg
3    1kg
4    1Kg
5    1kg
6   500g
7    1kg
8    1kg
9   250g
10   1kg
11   1kg

答案2

得分: 1

使用这个扩展数据:

>>> s = pd.Series({
...     0: 'Açúcar Refinado UNIÃO Pacote 1kg',
...     1: 'Açúcar Refinado QUALITÁ Pacote 1Kg',
...     2: 'Açúcar Refinado DA BARRA Pacote 1kg',
...     3: 'Açúcar Refinado CARAVELAS Pacote 1kg',
...     4: 'Açúcar Refinado GUARANI Pacote 1Kg',
...     5: 'Açúcar Refinado Granulado Doçúcar UNIÃO Pacote 1kg',
...     6: 'Açúcar Refinado Light UNIÃO Fit Pacote 500g',
...     7: 'Açúcar Refinado Granulado Premium UNIÃO Pacote 1kg',
...     8: 'Açúcar Refinado UNIÃO 1kg - Pacote com 10 Unidades',
...     9: 'Açúcar Refinado Granulado em Cubos UNIÃO Pote 250g',
...     10: 'Açúcar Refinado Granulado Premium Caravelas Pacote 1kg',
...     11: 'Açúcar Refinado União 1kg',
...     12: 'something something 1.25kg',
...     13: 'something something 1,25kg'})

解析出数字和单位:

>>> s.str.extract(r'(\d+(?:[\.,]\d*)?)( ?k?g)', flags=re.IGNORECASE) \
...     .assign(k=lambda d: d[0].str
...             .replace('(?<=\d),(?=\d)', '.', regex=True)
...             .pipe(pd.to_numeric))
       0   1       k
0      1  kg    1.00
1      1  Kg    1.00
2      1  kg    1.00
3      1  kg    1.00
4      1  Kg    1.00
5      1  kg    1.00
6    500   g  500.00
7      1  kg    1.00
8      1  kg    1.00
9    250   g  250.00
10     1  kg    1.00
11     1  kg    1.00
12  1.25  kg    1.25
13  1,25  kg    1.25

我还允许小数点和单位之间有可选的空格。这也适用于处理非整数数字,考虑不同的小数标记,例如在欧洲大陆,小数点标记为1,25,而在英语世界中通常是1.25

我在小数部分使用了非捕获组;Roman的版本也有效。对于解析数字,如果格式混杂,我会规范化小数格式。否则,您可以使用 import io; pd.read_csv(io.StringIO(your_df.to_csv()), decimal=',') 进行重新解析。

如果字符串中有像 250g ... 1kg 这样的情况,你可能需要在将其传递到这个函数之前进行过滤或清理。还考虑在正则表达式末尾添加 \b 以确保不匹配像 50grandmas 这样的情况。

还要感谢您提供了数据帧构造函数的原始版本。

英文:

With this extended data:

&gt;&gt;&gt; s = pd.Series({
...     0: &#39;A&#231;&#250;car Refinado UNI&#195;O Pacote 1kg&#39;,
...     1: &#39;A&#231;&#250;car Refinado QUALIT&#193; Pacote 1Kg&#39;,
...     2: &#39;A&#231;&#250;car Refinado DA BARRA Pacote 1kg&#39;,
...     3: &#39;A&#231;&#250;car Refinado CARAVELAS Pacote 1kg&#39;,
...     4: &#39;A&#231;&#250;car Refinado GUARANI Pacote 1Kg&#39;,
...     5: &#39;A&#231;&#250;car Refinado Granulado Do&#231;&#250;car UNI&#195;O Pacote 1kg&#39;,
...     6: &#39;A&#231;&#250;car Refinado Light UNI&#195;O Fit Pacote 500g&#39;,
...     7: &#39;A&#231;&#250;car Refinado Granulado Premium UNI&#195;O Pacote 1kg&#39;,
...     8: &#39;A&#231;&#250;car Refinado UNI&#195;O 1kg - Pacote com 10 Unidades&#39;,
...     9: &#39;A&#231;&#250;car Refinado Granulado em Cubos UNI&#195;O Pote 250g&#39;,
...     10: &#39;A&#231;&#250;car Refinado Granulado Premium Caravelas Pacote 1kg&#39;,
...     11: &#39;Acucar Refinado Uniao 1kg&#39;,
...     12: &#39;something something 1.25kg&#39;,
...     13: &#39;something something 1,25kg&#39;})

Parsing out the numbers and the units:

&gt;&gt;&gt; s.str.extract(r&#39;(\d+(?:[\.,]\d*)?)( ?k?g)&#39;, flags=re.IGNORECASE) \
...     .assign(k=lambda d: d[0].str
...             .replace(&#39;(?&lt;=\d),(?=\d)&#39;, &#39;.&#39;, regex=True)
...             .pipe(pd.to_numeric))
       0   1       k
0      1  kg    1.00
1      1  Kg    1.00
2      1  kg    1.00
3      1  kg    1.00
4      1  Kg    1.00
5      1  kg    1.00
6    500   g  500.00
7      1  kg    1.00
8      1  kg    1.00
9    250   g  250.00
10     1  kg    1.00
11     1  kg    1.00
12  1.25  kg    1.25
13  1,25  kg    1.25

I also allow for an optional space between the decimal and the units. Extended also to deal with non-integer numbers, accounting also for different decimal markers: eg in continental Europe, decimals are marked like 1,25 rather than 1.25 as in the Anglosphere.

I use a non-capturing group for the decimal portion; Roman's version also works. For parsing the number, I would normalise the decimal format if mixed. If otherwise, you can re-parse by import io; pd.read_csv(io.StringIO(your_df.to_csv()), decimal=&#39;,&#39;).

You will get more capture groups on the row if you have a string like 250g ... 1kg. You may want to filter or otherwise clean that before throwing it into this function. Also consider appending a \b to ensure that you don't match something like 50grandmas.

Thanks also for providing the data frame constructor ab initio.

huangapple
  • 本文由 发表于 2023年2月17日 23:30:02
  • 转载请务必保留本文链接:https://go.coder-hub.com/75486241.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定