如何在DataFrame中交换月份和日期的数值?

huangapple go评论97阅读模式
英文:

How to swap month and day values in a DataFrame?

问题

  1. 我有一个DataFrame,其中第一列包含日期和时间信息。
  2. 但是对我来说,这些信息被错误地识别了。
  3. 当我从数据库中提取信息并将数据发送到DataFrame表时,它看起来像是我“交换了位置” - “天”和“月”。
  4. “天”和“月”被颠倒了 - 天的值必须与月的值相同。
  5. “月”和“天”被颠倒了 - 月的值必须是天的值。
  6. 如何交换并使天像月一样,月像天一样?
  7. DataFrame表中,一列被识别为类型 - datetime
  8. 但是月和日的识别是错误的 - 它们被交换了。
  9. 如何在DataFrame中交换月和日的值?

--
之前

  1. id datetime temp_narvoz q_virob
  2. 0 1 2023-01-02 10:00:00 1.4 0.688331
  3. 1 2 2023-01-02 11:00:00 1.4 0.800867
  4. 2 3 2023-01-02 12:00:00 1.4 0.810746
  5. 3 4 2023-01-02 13:00:00 1.4 0.805522
  6. 4 5 2023-01-02 14:00:00 2.1 0.802979
  7. 1 Jan. 2, 2023, 10 a.m. 1.4 0.6883313373044648
  8. 2 Jan. 2, 2023, 11 a.m. 1.4 0.8008674575779552
  9. 3 Jan. 2, 2023, noon 1.4 0.8107462069822856
  10. 4 Jan. 2, 2023, 1 p.m. 1.4 0.8055222730239303
  11. 5 Jan. 2, 2023, 2 p.m. 2.1 0.8029786055112401
  12. 6 Jan. 2, 2023, 3 p.m. 2.1 0.7854097839013776
  13. 7 Jan. 2, 2023, 4 p.m. 2.1 0.7950360149694395
  14. 8 Jan. 2, 2023, 5 p.m. 1.6 0.8296386761628508
  15. 9 Jan. 2, 2023, 6 p.m. 1.6 0.83005095964985
  16. 10 Jan. 2, 2023, 7 p.m. 1.6 0.8569995535066821
  17. 11 Jan. 2, 2023, 8 p.m. -0.5 0.8710515387962285
  18. 12 Jan. 2, 2023, 9 p.m. -0.5 0.864164249456128
  19. 13 Jan. 2, 2023, 10 p.m. -0.5 0.8514567681549778
  20. 14 Jan. 2, 2023, 11 p.m. 0.3 0.8078847547912567
  21. 15 Feb. 2, 2023, midnight 0.3 0.7834063591629548

--
之后

  1. id datetime temp_narvoz q_virob
  2. 0 1 2023-02-01 10:00:00 1.4 0.688331
  3. 1 2 2023-02-01 11:00:00 1.4 0.800867
  4. 2 3 2023-02-01 12:00:00 1.4 0.810746
  5. 3 4 2023-02-01 13:00:00 1.4 0.805522
  6. 4 5 2023-02-01 14:00:00 2.1 0.802979
  7. 1 Feb. 1, 2023, 10 a.m. 1.4 0.6883313373044648
  8. 2 Feb. 1, 2023, 11 a.m. 1.4 0.8008674575779552
  9. 3 Feb. 1, 2023, noon 1.4 0.8107462069822856
  10. 4 Feb. 1, 2023, 1 p.m. 1.4 0.8055222730239303
  11. 5 Feb. 1, 2023, 2 p.m. 2.1 0.8029786055112401
  12. 6 Feb. 1, 2023, 3 p.m. 2.1 0.7854097839013776
  13. 7 Feb. 1, 2023, 4 p.m. 2.1 0.7950360149694395
  14. 8 Feb. 1, 2023, 5 p.m. 1.6 0.8296386761628508
  15. 9 Feb. 1, 2023, 6 p.m. 1.6 0.83005095964985
  16. 10 Feb. 1, 2023, 7 p.m. 1.6 0.8569995535066821
  17. 11 Feb. 1, 2023, 8 p.m. -0.5 0.8710515387962285
  18. 12 Feb. 1, 2023, 9 p.m. -0.5 0.864164249456128
  19. 13 Feb. 1, 2023, 10 p.m. -0.5 0.8514567681549778
  20. 14 Feb. 1, 2023, 11 p.m. 0.3 0.8078847547912567
  21. 15 Feb. 1, 2023, midnight 0.3 0.7834063591629548
英文:

I have a DataFrame in which the first column contains information in the form of a date and time.

But for me this information is not recognized correctly.

When I took information from the database and sent the data to the DataFrame table, it looks like I "swapped places" - "day" and "month".
"Day" and "month" are reversed - the day value must be the same value as the month.
"Month" and "day" are reversed - the month value must be a day value.
How can I flip and make the day be like a month, and the month like a day?

In a DataFrame table, a column is recognized as a type - datetime.
But the recognition of the month and day is wrong - they are swapped.

How to swap month and day values in a DataFrame?

  1. now the date time is being recognized so
  2. df['datetime'] = pd.to_datetime(df["datetime"].dt.strftime('%Y-%m-%d'))
  3. and the real location of the month and day is
  4. df['datetime'] = pd.to_datetime(df["datetime"].dt.strftime('%Y-%d-%m'))

--
before

  1. id datetime temp_narvoz q_virob
  2. 0 1 2023-01-02 10:00:00 1.4 0.688331
  3. 1 2 2023-01-02 11:00:00 1.4 0.800867
  4. 2 3 2023-01-02 12:00:00 1.4 0.810746
  5. 3 4 2023-01-02 13:00:00 1.4 0.805522
  6. 4 5 2023-01-02 14:00:00 2.1 0.802979
  7. 1 Jan. 2, 2023, 10 a.m. 1.4 0.6883313373044648
  8. 2 Jan. 2, 2023, 11 a.m. 1.4 0.8008674575779552
  9. 3 Jan. 2, 2023, noon 1.4 0.8107462069822856
  10. 4 Jan. 2, 2023, 1 p.m. 1.4 0.8055222730239303
  11. 5 Jan. 2, 2023, 2 p.m. 2.1 0.8029786055112401
  12. 6 Jan. 2, 2023, 3 p.m. 2.1 0.7854097839013776
  13. 7 Jan. 2, 2023, 4 p.m. 2.1 0.7950360149694395
  14. 8 Jan. 2, 2023, 5 p.m. 1.6 0.8296386761628508
  15. 9 Jan. 2, 2023, 6 p.m. 1.6 0.83005095964985
  16. 10 Jan. 2, 2023, 7 p.m. 1.6 0.8569995535066821
  17. 11 Jan. 2, 2023, 8 p.m. -0.5 0.8710515387962285
  18. 12 Jan. 2, 2023, 9 p.m. -0.5 0.864164249456128
  19. 13 Jan. 2, 2023, 10 p.m. -0.5 0.8514567681549778
  20. 14 Jan. 2, 2023, 11 p.m. 0.3 0.8078847547912567
  21. 15 Feb. 2, 2023, midnight 0.3 0.7834063591629548

--
after

  1. id datetime temp_narvoz q_virob
  2. 0 1 2023-02-01 10:00:00 1.4 0.688331
  3. 1 2 2023-02-01 11:00:00 1.4 0.800867
  4. 2 3 2023-02-01 12:00:00 1.4 0.810746
  5. 3 4 2023-02-01 13:00:00 1.4 0.805522
  6. 4 5 2023-02-01 14:00:00 2.1 0.802979
  7. 1 Feb. 1, 2023, 10 a.m. 1.4 0.6883313373044648
  8. 2 Feb. 1, 2023, 11 a.m. 1.4 0.8008674575779552
  9. 3 Feb. 1, 2023, noon 1.4 0.8107462069822856
  10. 4 Feb. 1, 2023, 1 p.m. 1.4 0.8055222730239303
  11. 5 Feb. 1, 2023, 2 p.m. 2.1 0.8029786055112401
  12. 6 Feb. 1, 2023, 3 p.m. 2.1 0.7854097839013776
  13. 7 Feb. 1, 2023, 4 p.m. 2.1 0.7950360149694395
  14. 8 Feb. 1, 2023, 5 p.m. 1.6 0.8296386761628508
  15. 9 Feb. 1, 2023, 6 p.m. 1.6 0.83005095964985
  16. 10 Feb. 1, 2023, 7 p.m. 1.6 0.8569995535066821
  17. 11 Feb. 1, 2023, 8 p.m. -0.5 0.8710515387962285
  18. 12 Feb. 1, 2023, 9 p.m. -0.5 0.864164249456128
  19. 13 Feb. 1, 2023, 10 p.m. -0.5 0.8514567681549778
  20. 14 Feb. 1, 2023, 11 p.m. 0.3 0.8078847547912567
  21. 15 Feb. 1, 2023, midnight 0.3 0.7834063591629548

答案1

得分: 0

import pandas as pd

df = pd.DataFrame({'date': ['11/02/2022', '12/02/2023', '13/02/2023']})

df['date'] = pd.to_datetime(df['date'])

df['date'] = df['date'].apply(lambda x: x.replace(day=x.month,
month=x.day))
print(df)

英文:
  1. import pandas as pd
  2. df = pd.DataFrame({'date': ['11/02/2022', '12/02/2023', '13/02/2023']})
  3. df['date'] = pd.to_datetime(df['date'])
  4. df['date'] = df['date'].apply(lambda x: x.replace(day=x.month,
  5. month=x.day))
  6. print(df)

huangapple
  • 本文由 发表于 2023年2月16日 17:54:42
  • 转载请务必保留本文链接:https://go.coder-hub.com/75470524.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定