匹配列值与三层嵌套列表中的元素,并从另一个列表中添加相应的值。

huangapple go评论90阅读模式
英文:

Matching column values with elements in a list of lists of lists and adding corresponding values from another list

问题

  1. assets = [["Ferrari", "BMW", "Suzuki"], ["Ducati", "Honda"], ["Apple", "Samsung", "Oppo"]]
  2. price = [[853600, 462300, 118900], [96500, 16700], [1260, 750, 340]]
  3. # Convert the data into a dictionary for easy access
  4. data = {}
  5. for i in range(len(assets)):
  6. for j in range(len(assets[i])):
  7. data[assets[i][j]] = price[i][j]
  8. # Create a DataFrame from the data
  9. import pandas as pd
  10. df = pd.DataFrame(data.items(), columns=["Item", "Price"])
  11. # Calculate the Total Cost
  12. total_cost = df["Price"].sum()
  13. # Add the Total Cost to the DataFrame
  14. df["Total Cost"] = total_cost
  15. # If you want to display the DataFrame
  16. print(df)
英文:
  1. assets = [[['Ferrari', 'BMW', 'Suzuki'], ['Ducati', 'Honda']], [['Apple', 'Samsung', 'Oppo']]]
  2. price = [[[853600, 462300, 118900], [96500, 16700]], [[1260, 750, 340]]]

I have a dataframe as follows :

Car Bike Phone
BMW Ducati Apple
Ferrari Honda Oppo

Looking for code to get the Total_Cost , i.e 462300 + 96500 + 1260 = 560060

Car Bike Phone Total Cost
BMW Ducati Apple 560060
Ferrari Honda Oppo 870640

I tried the for loop and succeeded, I want the advanced code if any.

答案1

得分: 1

这是一种可能的解决方案:

  1. df = pd.DataFrame({'Car': ['宝马', '法拉利'], 'Bike': ['杜卡迪', '本田'], 'Phone': ['苹果', 'Oppo']})
  2. asset_price = {asset: price[a][b][c]
  3. for a, asset_list in enumerate(assets)
  4. for b, asset_sub_list in enumerate(asset_list)
  5. for c, asset in enumerate(asset_sub_list)
  6. }
  7. df['总成本'] = df.apply(lambda row: sum([asset_price[asset] for asset in row]), axis=1)
  8. print(df)

你也可以根据你的用例使用numpy方法import numpy as np。但我建议使用第一种方法,因为它更简单易懂。

  1. df = pd.DataFrame({'Car': ['宝马', '法拉利'], 'Bike': ['杜卡迪', '本田'], 'Phone': ['苹果', 'Oppo']})
  2. flat_assets = np.concatenate([np.concatenate(row) for row in assets])
  3. flat_price = np.concatenate([np.concatenate(row) for row in price])
  4. asset_dict = dict(zip(flat_assets, flat_price))
  5. asset_prices = np.array([asset_dict[row] for row in df.values.flatten()
  6. if row in asset_dict])
  7. df['总成本'] = np.sum(asset_prices.reshape(-1, 3), axis=1)
  8. print(df)
英文:

Here is a possible solution:

  1. df = pd.DataFrame({'Car': ['BMW', 'Ferrari'], 'Bike': ['Ducati', 'Honda'], 'Phone': ['Apple', 'Oppo']})
  2. asset_price = {asset: price[a][b][c]
  3. for a, asset_list in enumerate(assets)
  4. for b, asset_sub_list in enumerate(asset_list)
  5. for c, asset in enumerate(asset_sub_list)
  6. }
  7. df['Total_Cost'] = df.apply(lambda row: sum([asset_price[asset] for asset in row]), axis=1)
  8. print(df)

  1. Car Bike Phone Total_Cost
  2. 0 BMW Ducati Apple 560060
  3. 1 Ferrari Honda Oppo 870640

You can also use numpy approach import numpy as np depending on your use-case. But I will suggest the first approach which is more simple and easy to understand.

  1. df = pd.DataFrame({'Car': ['BMW', 'Ferrari'], 'Bike': ['Ducati', 'Honda'], 'Phone': ['Apple', 'Oppo']})
  2. flat_assets = np.concatenate([np.concatenate(row) for row in assets])
  3. flat_price = np.concatenate([np.concatenate(row) for row in price])
  4. asset_dict = dict(zip(flat_assets, flat_price))
  5. asset_prices = np.array([asset_dict[row] for row in df.values.flatten()
  6. if row in asset_dict])
  7. df['Total Cost'] = np.sum(asset_prices.reshape(-1, 3), axis=1)
  8. print(df)

  1. Car Bike Phone Total Cost
  2. 0 BMW Ducati Apple 560060
  3. 1 Ferrari Honda Oppo 870640

答案2

得分: 0

一个替代方法:

首先构建一个数据框df_price,将price映射到assets和分类(CarBikePhone):

  1. df_price = (
  2. pd.DataFrame({"assets": assets, "price": price}).explode(["assets", "price"])
  3. .assign(cols=["Car", "Bike", "Phone"]).explode(["assets", "price"])
  4. )

结果:

  1. assets price cols
  2. 0 Ferrari 853600 Car
  3. 0 BMW 462300 Car
  4. 0 Suzuki 118900 Car
  5. 0 Ducati 96500 Bike
  6. 0 Honda 16700 Bike
  7. 1 Apple 1260 Phone
  8. 1 Samsung 750 Phone
  9. 1 Oppo 340 Phone

(我在这里插入了分类,因为在其他答案的评论中有这样的说法:“...但是如果资产的嵌套列表有共同的名称(比如:在Suzuki的地方是Honda),那么Honda汽车和Honda摩托车将共享一个价格”。)

然后将价格加入到.melt后的主数据框df,使用辅助列idx进行.pivot,在行中总结价格,并整理结果。

  1. res = (
  2. df.melt(var_name="cols", value_name="assets", ignore_index=False)
  3. .merge(df_price, on=["cols", "assets"])
  4. .assign(idx=lambda df: df.groupby("cols").cumcount())
  5. .pivot(index="idx", columns="cols")
  6. .assign(total=lambda df: df.loc[:, "price"].sum(axis=1))
  7. .loc[:, ["assets", "total"]]
  8. .droplevel(0, axis=1).rename(columns={"" : "Total_Costs"})
  9. )

结果:

  1. cols Bike Car Phone Total_Costs
  2. idx
  3. 0 Ducati BMW Apple 560060.0
  4. 1 Honda Ferrari Oppo 870640.0
英文:

An alternative approach:

First build a dataframe df_price which maps prices onto the assets and the classification (Car, Bike, and Phone):

  1. df_price = (
  2. pd.DataFrame({"assets": assets, "price": price}).explode(["assets", "price"])
  3. .assign(cols=["Car", "Bike", "Phone"]).explode(["assets", "price"])
  4. )

Result:

  1. assets price cols
  2. 0 Ferrari 853600 Car
  3. 0 BMW 462300 Car
  4. 0 Suzuki 118900 Car
  5. 0 Ducati 96500 Bike
  6. 0 Honda 16700 Bike
  7. 1 Apple 1260 Phone
  8. 1 Samsung 750 Phone
  9. 1 Oppo 340 Phone

(I have inserted the classification here due to the comment on the other answer: "... But if the nested lists of asset is having common name (say : Honda in place if Suzuki ) then Honda car and Honda Bike will take one price".

Then join the prices onto the .melted main dataframe df, .pivot (using the auxilliary column idx), sum up the prices in the rows, and bring the result in shape.

  1. res = (
  2. df.melt(var_name="cols", value_name="assets", ignore_index=False)
  3. .merge(df_price, on=["cols", "assets"])
  4. .assign(idx=lambda df: df.groupby("cols").cumcount())
  5. .pivot(index="idx", columns="cols")
  6. .assign(total=lambda df: df.loc[:, "price"].sum(axis=1))
  7. .loc[:, ["assets", "total"]]
  8. .droplevel(0, axis=1).rename(columns={"": "Total_Costs"})
  9. )

Result:

  1. cols Bike Car Phone Total_Costs
  2. idx
  3. 0 Ducati BMW Apple 560060.0
  4. 1 Honda Ferrari Oppo 870640.0

huangapple
  • 本文由 发表于 2023年2月16日 16:37:25
  • 转载请务必保留本文链接:https://go.coder-hub.com/75469641.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定