根据另一列中的前一行对 Pandas DataFrame 进行排序

huangapple go评论84阅读模式
英文:

Sort Pandas DataFrame based on previous row in another column

问题

在我的Python项目中,我有以下DataFrame:

  1. df1 = pd.DataFrame({"Col A":[1,2,3],"Col B":[3,2,2]})

我希望按照以下方式对其进行排序:

  1. df2 = pd.DataFrame({"Col A":[1,3,2],"Col B":[3,2,2]})

我的目标是使Col A中的每个值与Col B中的前一个值匹配。

你有没有任何想法如何使这个工作正常,而且尽量减少工作量?

我尝试使用.sort_values(by=),但这也是我的当前知识的限制。

英文:

I have the following DataFrame in my Python porject:

  1. df1 = pd.DataFrame({"Col A":[1,2,3],"Col B":[3,2,2]})

I wish to order it in this kind of way:

  1. df2 = pd.DataFrame({"Col A":[1,3,2],"Col B":[3,2,2]})

My goal is that each value in Col A matches the previous' value in Col B.

Do you have any idea of how to make this work properly and as little effort as possible?

I tried to work with .sort_values(by=) but that's also where my current knowledge stops.

答案1

得分: 1

如果需要对Col B每个值进行滚动操作,可以使用 lambda 函数:

  1. df1 = pd.DataFrame({"Col A":[1,2,3,7,4,8],"Col B":[3,2,2,1,1,1]})
  2. print (df1)
  3. Col A Col B
  4. 0 1 3
  5. 1 2 2
  6. 2 3 2
  7. 3 7 1
  8. 4 4 1
  9. 5 8 1
  10. df1['Col A'] = df1.groupby('Col B')['Col A'].transform(lambda x: np.roll(x, -1))
  11. print (df1)
  12. Col A Col B
  13. 0 1 3
  14. 1 3 2
  15. 2 2 2
  16. 3 4 1
  17. 4 8 1
  18. 5 7 1
英文:

If need roll one value per Col B use lambda function:

  1. df1 = pd.DataFrame({"Col A":[1,2,3,7,4,8],"Col B":[3,2,2,1,1,1]})
  2. print (df1)
  3. Col A Col B
  4. 0 1 3
  5. 1 2 2
  6. 2 3 2
  7. 3 7 1
  8. 4 4 1
  9. 5 8 1
  10. df1['Col A'] = df1.groupby('Col B')['Col A'].transform(lambda x: np.roll(x, -1))
  11. print (df1)
  12. Col A Col B
  13. 0 1 3
  14. 1 3 2
  15. 2 2 2
  16. 3 4 1
  17. 4 8 1
  18. 5 7 1

答案2

得分: 0

是的,您可以使用sort_values()和创建映射字典来实现所需的输出,示例如下:

  1. import pandas as pd
  2. df1 = pd.DataFrame({"Col A":[1,2,3],"Col B":[3,2,2]})
  3. # 用于排序的映射字典
  4. mapping_dict = {1:3, 3:2, 2:2}
  5. df1["sort_order"] = df1["Col A"].map(mapping_dict)
  6. df2 = df1.sort_values(by="sort_order").drop(columns=["sort_order"])
  7. print(df2)

输出结果:

  1. Col A Col B
  2. 0 1 3
  3. 2 3 2
  4. 1 2 2
英文:

Yes, you can achieve the desired output by using sort_values() and by creating a mapping dictionary so:

  1. import pandas as pd
  2. df1 = pd.DataFrame({"Col A":[1,2,3],"Col B":[3,2,2]})
  3. # mapping_dict for ordering
  4. mapping_dict = {1:3, 3:2, 2:2}
  5. df1["sort_order"] = df1["Col A"].map(mapping_dict)
  6. df2 = df1.sort_values(by="sort_order").drop(columns=["sort_order"])
  7. print(df2)

Output:

  1. Col A Col B
  2. 0 1 3
  3. 2 3 2
  4. 1 2 2

huangapple
  • 本文由 发表于 2023年2月16日 14:08:57
  • 转载请务必保留本文链接:https://go.coder-hub.com/75468446.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定