在R中,使用一个函数引用另一个数据框,向数据框添加一列。

huangapple go评论105阅读模式
英文:

Add a column to data frame using a function referencing another data frame in R

问题

对于每个人,对于每个t值,我需要取该t值的天花板值,找到df2中该人和天花板t值的行,然后取exp(c1b1+c2b2+c3*b3)的行,其中b1=1,b2=1,b3=1。

所以对于Ben:

ceiling(1.1)=2,在df2中对于Ben和t=2,我们得到exp(1b1+0b2+0*b3)

ceiling (2.3) = 3,在df2中对于Ben和t=3,我们得到exp(1b1+0b2+1*b3)

然后exp(1b1+0b2+0b3) + exp(1b1+0b2+1b3)

对于Lucy:

ceiling(1.2) = 2,在df2中对于Lucy和t=2,我们得到exp(0b1+0b2+1*b3)

ceiling(2.5) = 3,在df2中对于Lucy和t=3,我们得到exp(0b1+0b2+2*b3)

ceiling(2.7) = 3,在df2中对于Lucy和t=3,我们得到exp(0b1+0b2+2*b3)

然后exp(0b1+0b2+1b3) + exp(0b1+0b2+2b3) + exp(0b1+0b2+2*b3)

英文:
  1. df1=
  2. Name t
  3. 1 Ben 1.1
  4. 2 Ben 2.3
  5. 3 Lucy 1.2
  6. 4 Lucy 2.5
  7. 5 Lucy 2.7
  1. df2 =
  2. Name t c1 c2 c3
  3. 1 Ben 1 0 0 0
  4. 2 Ben 2 1 0 0
  5. 3 Ben 3 1 0 1
  6. 4 Lucy 1 1 1 0
  7. 5 Lucy 2 0 0 1
  8. 6 Lucy 3 0 0 2

For each person, for each t value, I need to take the ceiling of that t value, find the row with that person and ceiling t value in df2 and take exp(c1b1+c2*b2+c3*b3) of that row where b1=1, b2=1, b3=1.

So for Ben:

ceiling(1.1)=2, in df2 for Ben and t=2 we get exp(1b1+0b2+0*b3)

ceiling (2.3) = 3, in df2 for Ben and t=3 we get exp(1b1+0b2+1*b3)

and then exp(1b1+0b2+0b3) + exp(1b1+0b2+1b3)

For Lucy:

ceiling(1.2) = 2, in df2 for Lucy and t=2 we get exp(0b1+0b2+1*b3)

ceiling(2.5) = 3, in df2 for Lucy and t=3 we get exp(0b1+0b2+2*b3)

ceiling(2.7) = 3, in df2 for Lucy and t=3 we get exp(0b1+0b2+2*b3)

and then exp(0b1+0b2+1b3) + exp(0b1+0b2+2b3) + exp(0b1+0b2+2*b3)

答案1

得分: 2

使用dplyr包,我们可以通过left_join,然后使用mutate获取每一行的值,最后使用summarize来获取总和:

  1. library(dplyr)
  2. # 将b1、b2和b3设置为1
  3. b1 <- b2 <- b3 <- 1
  4. df1 %>%
  5. mutate(ceiling_t = ceiling(t)) %>%
  6. left_join(df2, by = c(Name = "Name", ceiling_t = "t")) %>%
  7. mutate(result = exp(c1 * b1 + c2 * b2 + c3 * b3)) %>%
  8. group_by(Name) %>%
  9. summarize(result = sum(result))
  10. #> # A tibble: 2 x 2
  11. #> Name result
  12. #> <chr> <dbl>
  13. #> 1 Ben 10.1
  14. #> 2 Lucy 17.5

创建于2023-02-15,使用reprex v2.0.2

英文:

Using the dplyr package, we could do this via a left_join, then mutate to get each row's value and finally summarize to get the sum:

  1. library(dplyr)
  2. # Set b1, b2 and b3 to 1
  3. b1 &lt;- b2 &lt;- b3 &lt;- 1
  4. df1 %&gt;%
  5. mutate(ceiling_t = ceiling(t)) %&gt;%
  6. left_join(df2, by = c(Name = &quot;Name&quot;, ceiling_t = &quot;t&quot;)) %&gt;%
  7. mutate(result = exp(c1 * b1 + c2 * b2 + c3 * b3)) %&gt;%
  8. group_by(Name) %&gt;%
  9. summarize(result = sum(result))
  10. #&gt; # A tibble: 2 x 2
  11. #&gt; Name result
  12. #&gt; &lt;chr&gt; &lt;dbl&gt;
  13. #&gt; 1 Ben 10.1
  14. #&gt; 2 Lucy 17.5

<sup>Created on 2023-02-15 with reprex v2.0.2</sup>

答案2

得分: 2

在基本的R中:

  1. a <- merge(transform(df1, t = ceiling(t)), df2)
  2. rowsum(exp(as.matrix(a[-(1:2)])%*%c(b1 = 1,b2 = 1,b3 = 1)), a$Name)
  3. [,1]
  4. Ben 10.10734
  5. Lucy 17.49639
英文:

in base R:

  1. a &lt;- merge(transform(df1, t = ceiling(t)), df2)
  2. rowsum(exp(as.matrix(a[-(1:2)])%*%c(b1 = 1,b2 = 1,b3 = 1)), a$Name)
  3. [,1]
  4. Ben 10.10734
  5. Lucy 17.49639

huangapple
  • 本文由 发表于 2023年2月16日 06:20:29
  • 转载请务必保留本文链接:https://go.coder-hub.com/75465967.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定