英文:
Creating a column that takes a Week Number and Year and returns a Date
问题
我正在使用一个数据框,其中我创建了一个“Year”和“Week #”列。我尝试创建一个新的“Date”列,用于从“Year”和“Week #”列中获取日期。
这是我的数据框现在的样子:
Year | Week # |
---|---|
2023 | 10 |
2023 | 11 |
2023 | 12 |
应该看起来像这样:
Year | Week # | Date |
---|---|---|
2023 | 10 | 3/6/23 |
2023 | 11 | 3/13/23 |
2023 | 12 | 3/20/23 |
我尝试了以下代码:
from datetime import datetime
df['Date'] = datetime.strptime('{}-{}-1'.format(df['Year'], df['Week #']), '%Y-%W-%w').strftime('%Y-%m-%dT%H:%M:%S.%f')[:-3] + 'Z'
然而,我得到了以下错误:
ValueError: time data '0 2020\n1 2020\n2 2020\n3 2020\n4
2020\n ... \n35913 2024\n35914 2024\n35915 2024\n35916
2024\n35917 2024\nName: Year, Length: 35918, dtype: int64-0 02\n1
03\n2 04\n3 05\n4 06\n ..
35913 42\n35914
43\n35915 44\n35916 45\n35917 46\nName: Week #, Length: 35918, dtype:
object-1' does not match format '%Y-%W-%w'.
我还尝试了以下代码:
from datetime import datetime
from isoweek import Week
df['Date'] = Week(df['Year'], df['Week #']).monday()
但我得到了以下错误:
ValueError: The truth value of a Series is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all().
英文:
I'm currently working with a dataframe where I created a Year and Week # column. I'm trying to create a new column Date that gives me the date for a from the Year and Week # columns.
This is what my dataframe looks like now
Year | Week # |
---|---|
2023 | 10 |
2023 | 11 |
2023 | 12 |
It should look like this
Year | Week # | Date |
---|---|---|
2023 | 10 | 3/6/23 |
2023 | 11 | 3/13/23 |
2023 | 12 | 3/20/23 |
I tried the following
from datetime import datetime
df['Date'] = datetime.strptime('{}-{}-1'.format(df['Year'], df['Week #']), '%Y-%W-%w').strftime('%Y-%m-%dT%H:%M:%S.%f')[:-3] + 'Z'
However, I got this error
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
Cell In[57], line 3
1 from datetime import datetime
----> 3 df['Date'] = datetime.strptime('{}-{}-1'.format(df['Year'], df['Week #']), '%Y-%W-%w').strftime('%Y-%m-%dT%H:%M:%S.%f')[:-3] + 'Z'
4 df
File /opt/anaconda3/lib/python3.9/_strptime.py:568, in _strptime_datetime(cls, data_string, format)
565 def _strptime_datetime(cls, data_string, format="%a %b %d %H:%M:%S %Y"):
566 """Return a class cls instance based on the input string and the
567 format string."""
--> 568 tt, fraction, gmtoff_fraction = _strptime(data_string, format)
569 tzname, gmtoff = tt[-2:]
570 args = tt[:6] + (fraction,)
File /opt/anaconda3/lib/python3.9/_strptime.py:349, in _strptime(data_string, format)
347 found = format_regex.match(data_string)
348 if not found:
--> 349 raise ValueError("time data %r does not match format %r" %
350 (data_string, format))
351 if len(data_string) != found.end():
352 raise ValueError("unconverted data remains: %s" %
353 data_string[found.end():])
ValueError: time data '0 2020\n1 2020\n2 2020\n3 2020\n4
2020\n ... \n35913 2024\n35914 2024\n35915 2024\n35916
2024\n35917 2024\nName: Year, Length: 35918, dtype: int64-0 02\n1
03\n2 04\n3 05\n4 06\n ..\n35913 42\n35914
43\n35915 44\n35916 45\n35917 46\nName: Week #, Length: 35918, dtype:
object-1' does not match format '%Y-%W-%w'
I also tried the following
from datetime import datetime
from isoweek import Week
df['Date'] = Week(df['Year'], df['Week #']).monday()
But I got the following error
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
Cell In[51], line 4
1 from datetime import datetime
2 from isoweek import Week
----> 4 df['Date'] = Week(df['Year'], df['Week #']).monday()
File /opt/anaconda3/lib/python3.9/site-packages/isoweek.py:34, in Week.__new__(cls, year, week)
27 def __new__(cls, year, week):
28 """Initialize a Week tuple with the given year and week number.
29
30 The week number does not have to be within range. The numbers
31 will be normalized if not. The year must be within the range
32 1 to 9999.
33 """
---> 34 if week < 1 or week > 52:
35 return cls(year, 1) + (week - 1)
36 if year < 1 or year > 9999:
File /opt/anaconda3/lib/python3.9/site-packages/pandas/core/generic.py:1527, in NDFrame.__nonzero__(self)
1525 @final
1526 def __nonzero__(self) -> NoReturn:
-> 1527 raise ValueError(
1528 f"The truth value of a {type(self).__name__} is ambiguous. "
1529 "Use a.empty, a.bool(), a.item(), a.any() or a.all()."
1530 )
ValueError: The truth value of a Series is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all().
答案1
得分: 1
你可以使用 format
参数来指定日期格式。首先将日期以字符串格式构建,然后将其转换为实际日期。
data = {"year": [2022, 2023], "week": [1,2]}
df = pd.DataFrame(data)
print(df)
# year week
# 0 2022 1
# 1 2023 2
# 创建 'year-w-1' 格式的日期
df['date'] = df['year'].astype(str).str.cat(others=[df['week'].astype(str), np.array(['1']*len(df))], sep='-')
print(df)
# year week date
# 0 2022 1 2022-1-1
# 1 2023 2 2023-2-1
# 格式为 年-周-星期几 (1 = 星期一)
df['date'] = pd.to_datetime(df['date'], format="%Y-%W-%w")
print(df)
# year week date
# 0 2022 1 2022-01-03
# 1 2023 2 2023-01-09
请注意,第二个数据框中的 -1
后来被解释为星期几!
英文:
IIUC, you can use the format
parameter to specify your date format. First build your date in string format, then turn it into a real date.
data = {"year": [2022, 2023], "week": [1,2]}
df = pd.DataFrame(data)
print(df)
# year week
# 0 2022 1
# 1 2023 2
# Create 'year-w-1' formatted dates
df['date'] = df['year'].astype(str).str.cat(others=[df['week'].astype(str), np.array(['1']*len(df))], sep='-')
print(df)
# year week date
# 0 2022 1 2022-1-1
# 1 2023 2 2023-2-1
# format is year-week-weekday (1 = Monday)
df['date'] = pd.to_datetime(df['date'], format="%Y-%W-%w")
print(df)
# year week date
# 0 2022 1 2022-01-03
# 1 2023 2 2023-01-09
Note that the -1
in the second dataframe is later interpreted as weekday!
答案2
得分: 1
import pandas as pd
import datetime
# create a sample dataframe with week number and year columns
df = pd.DataFrame({"Year": [2016, 2016, 2016, 2017, 2017, 2017],"Week": [43, 44, 51, 2, 5, 12]})
# define a function that takes a week number and year and returns a date
def week_to_date(week, year):
# get the first day of the week (Monday) for the given week and year
date = datetime.date.fromisocalendar(year, week, 1)
return date
# apply the function to the dataframe and create a new column with the date
df["Date"] = df.apply(lambda row: week_to_date(row["Week"], row["Year"]), axis=1)
# print the dataframe
print(df)
Output:
Year Week Date
0 2016 43 2016-10-24
1 2016 44 2016-10-31
2 2016 51 2016-12-19
3 2017 2 2017-01-09
4 2017 5 2017-01-30
5 2017 12 2017-03-20
英文:
As i do not have your data frame to match i am using sample input
import pandas as pd
import datetime
# create a sample dataframe with week number and year columns
df = pd.DataFrame({"Year": [2016, 2016, 2016, 2017, 2017, 2017],"Week": [43, 44, 51, 2, 5, 12]})
# define a function that takes a week number and year and returns a date
def week_to_date(week, year):
# get the first day of the week (Monday) for the given week and year
date = datetime.date.fromisocalendar(year, week, 1)
return date
# apply the function to the dataframe and create a new column with the date
df["Date"] = df.apply(lambda row: week_to_date(row["Week"], row["Year"]), axis=1)
# print the dataframe
print(df)
Output:
Year Week Date
0 2016 43 2016-10-24
1 2016 44 2016-10-31
2 2016 51 2016-12-19
3 2017 2 2017-01-09
4 2017 5 2017-01-30
5 2017 12 2017-03-20
通过集体智慧和协作来改善编程学习和解决问题的方式。致力于成为全球开发者共同参与的知识库,让每个人都能够通过互相帮助和分享经验来进步。
评论