如何从邮政编码级别的形状文件中保留美国大陆的形状?

huangapple go评论68阅读模式
英文:

how to keep continental U.S.A. from shapefile at the zip code level?

问题

我已经从人口普查局下载了大型.shapefile文件,以邮政编码级别进行了压缩。

链接在这里:cb_2017_us_zcta510_500k.shp (https://www2.census.gov/geo/tiger/TIGER_RD18/LAYER/ZCTA520/)
问题是,通过geopandas读取后,显然包括了阿拉斯加和所有小岛屿周围。

如何从邮政编码级别的形状文件中保留美国大陆的形状?

gg.head(1)
Out[709]: 
  ZCTA5CE20 GEOID20 CLASSFP20 MTFCC20 FUNCSTAT20    ALAND20  \
0     35592   35592        B5   G6350          S  298552385   

   AWATER20   INTPTLAT20    INTPTLON20  \
0    235989  +33.7427261  -088.0973903   

                                                                                                                                             geometry  
0  POLYGON ((-88.24735 33.65390, -88.24713 33.65415, -88.24656 33.65454, -88.24658 33.65479, -88.24672 33.65497, -88.24672 33.65520, -88.24626 33.65559, -88.24601 33.65591, -88.24601 33.65630, -88.24...

我知道在R中有一个简单的解决方案(使用多边形的面积,请参考https://stackoverflow.com/questions/50375619/how-to-remove-all-the-small-islands-from-the-census-shapefile-zip-code-level),但在Python中应该怎么做呢?

谢谢!

英文:

I have downloaded the large .shapefile at the zip code level from Census.

The link is here : cb_2017_us_zcta510_500k.shp (https://www2.census.gov/geo/tiger/TIGER_RD18/LAYER/ZCTA520/)
The problem is that reading into geopandas shows that, obviously, it includes alaska and all the small island around.

如何从邮政编码级别的形状文件中保留美国大陆的形状?

gg.head(1)
Out[709]: 
  ZCTA5CE20 GEOID20 CLASSFP20 MTFCC20 FUNCSTAT20    ALAND20  \
0     35592   35592        B5   G6350          S  298552385   

   AWATER20   INTPTLAT20    INTPTLON20  \
0    235989  +33.7427261  -088.0973903   

                                                                                                                                                                                                  geometry  
0  POLYGON ((-88.24735 33.65390, -88.24713 33.65415, -88.24656 33.65454, -88.24658 33.65479, -88.24672 33.65497, -88.24672 33.65520, -88.24626 33.65559, -88.24601 33.65591, -88.24601 33.65630, -88.24...  

I know there is an easy solution in R (that uses the area of a polygon, see https://stackoverflow.com/questions/50375619/how-to-remove-all-the-small-islands-from-the-census-shapefile-zip-code-level) but what can I do here in Python?

Thanks!

答案1

得分: 1

这可以通过使用CONUS形状定义文件来完成;然而,美国大陆具有一个方便的特性,即它位于一个边界框内(而所有非CONUS地理位置都位于其外部)。所以最简单的方法是使用边界框进行筛选:

# 宽容的边界框
x1, y1, x2, y2 = (-130, 20, -50, 50)

gg_wgs84 = gg.to_crs('epsg:4326')
gg_conus = gg[
    (gg_wgs84.centroid.x > x1)
    & (gg_wgs84.centroid.y > y1)
    & (gg_wgs84.centroid.x < x2)
    & (gg_wgs84.centroid.y < y2)
]
英文:

This can certainly be done using a CONUS shape definition file; however, the continental US has the convenient property of falling within a bounding box (and all non-CONUS geographies fall out of it). So the easiest way would be to filter using a bounding box:

# generous bounding box
x1, y1, x2, y2 = (-130, 20, -50, 50)

gg_wgs84 = gg.to_crs(&#39;epsg:4326&#39;)
gg_conus = gg[
    (gg_wgs84.centroid.x &gt; x1)
    &amp; (gg_wgs84.centroid.y &gt; y1)
    &amp; (gg_wgs84.centroid.x &lt; x2)
    &amp; (gg_wgs84.centroid.y &lt; y2)
]

huangapple
  • 本文由 发表于 2023年2月10日 12:51:17
  • 转载请务必保留本文链接:https://go.coder-hub.com/75407085.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定