使用管道通过 sample_weight 参数与 XGBoost 配合使用

huangapple go评论71阅读模式
英文:

Using sample_weight param with XGBoost through a pipeline

问题

我想在xgboost包的XGBClassifier中使用sample_weight参数。

问题出现在我尝试在sklearn.pipeline中使用它时。

from sklearn.preprocessing import MinMaxScaler
from sklearn.pipeline import Pipeline
from xgboost import XGBClassifier

clf = XGBClassifier(**params)
steps = [('scaler', MinMaxScaler()), ('classifier', clf)]

pipeline = Pipeline(steps)

当我运行pipeline.fit(x, y, sample_weight=sample_weight),其中sample_weight只是一个包含整数表示权重的字典时,我遇到了以下错误:

ValueError: Pipeline.fit不接受sample_weight参数。

我该如何解决这个问题?有没有解决方法?我已经看到有一个问题存在。

英文:

I want to use the sample_weight parameter with XGBClassifier from the xgboost package.

The problem happen when I want to use it inside a pipeline from sklearn.pipeline.

from sklearn.preprocessing import MinMaxScaler
from sklearn.pipeline      import Pipeline
from xgboost  import XGBClassifier

clf = XGBClassifier(**params)
steps = [ ('scaler', MinMaxScaler() ), ('classifier', clf ) ]
    
pipeline = Pipeline( steps )

When I run pipeline.fit(x, y, sample_weight=sample_weight) where sample_weight is just a dictionary with int representing weights, I have the following error:

> ValueError: Pipeline.fit does not accept the sample_weight parameter.

How can I solve this problem? Is there a workaround? I have seen that an issue already exists.

答案1

得分: 2

The value error message is factually correct - the Pipeline class does not contain any business logic dealing with sample weights.

However, your pipeline has two steps. And one of the step components - the XGBoost classifier - supports sample weights.

So, the solution is to address the sample weights parameter directly to the classifier step. According to Scikit-Learn conventions, you can do so by prepending the classifier__ prefix (reads "classifier" plus two underscore characters) to your fit param name.

In short:

pipeline = Pipeline( steps )
pipeline.fit(X, y, classifier__sample_weights = weights)
英文:

The value error message is factually correct - the Pipeline class does not contain any business logic dealing with sample weights.

However, your pipeline has two steps. And one of the step components - the XGBoost classifier - supports sample weights.

So, the solution is to address the sample weights parameter directly to the classifier step. According to Scikit-Learn conventions, you can do so by prepending the classifier__ prefix (reads "classifier" plus two underscore characters) to your fit param name.

In short:

pipeline = Pipeline( steps )
pipeline.fit(X, y, classifier__sample_weights = weights)

huangapple
  • 本文由 发表于 2023年2月8日 23:36:59
  • 转载请务必保留本文链接:https://go.coder-hub.com/75388146.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定