ray tune batch_size should be a positive integer value, but got batch_size=<ray.tune.search.sample.Categorical object

huangapple go评论49阅读模式
英文:

ray tune batch_size should be a positive integer value, but got batch_size=<ray.tune.search.sample.Categorical object

问题

我正在尝试使用Ray来调整神经网络。我按照标准流程来运行它在MNIST数据上。数据加载部分如下:

trainset = torchvision.datasets.MNIST(
    root='../data', train=True, download=True, transform=transforms.Compose([
                     transforms.ToTensor(),
                     transforms.Normalize((0.1307,), (0.3081,))
                 ]))

testset = torchvision.datasets.MNIST(
    root='../data', train=False, download=True, transform=transforms.Compose([
                     transforms.ToTensor(),
                     transforms.Normalize((0.1307,), (0.3081,))
                 ]))

train_loader = torch.utils.data.DataLoader(
    trainset,
    batch_size=config_set["batch_size"], shuffle=True)

test_loader = torch.utils.data.DataLoader(
    testset,
    batch_size=1000, shuffle=True)

当我们使用可配置的超参数运行调整时,它抛出错误:

config_set = {
    "lr": tune.loguniform(1e-4, 1e-1),
    "batch_size": tune.choice([16, 32, 64, 128])
}

result = tune.run(
    train_model, fail_fast="raise", config=config_set)

*** ValueError: batch_size应该是一个正整数值,但得到的是batch_size=<ray.tune.search.sample.Categorical object at ***

英文:

I am trying to tune a neural network using ray. I follow the standard flow to get it running on MNIST data. Data loading

  trainset = torchvision.datasets.MNIST(
        root=&#39;../data&#39;, train=True, download=True, transform=transforms.Compose([
                         transforms.ToTensor(),
                         transforms.Normalize((0.1307,), (0.3081,))
                     ]))

  testset = torchvision.datasets.MNIST(
        root=&#39;../data&#39;, train=False, download=True, transform=transforms.Compose([
                         transforms.ToTensor(),
                         transforms.Normalize((0.1307,), (0.3081,))
                     ]))

  train_loader = torch.utils.data.DataLoader(
      trainset,
      batch_size=config_set[&quot;batch_size&quot;], shuffle=True)
  
  test_loader = torch.utils.data.DataLoader(
      testset,
      batch_size=1000, shuffle=True)

when we run the tune with the configurable hyper parameters, it throws error

 config_set = {
    &quot;lr&quot;: tune.loguniform(1e-4, 1e-1),
    &quot;batch_size&quot;: tune.choice([16, 32, 64,128])
}

result = tune.run(
    train_model, fail_fast=&quot;raise&quot;, config=config_set)

*** ValueError: batch_size should be a positive integer value, but got batch_size=<ray.tune.search.sample.Categorical object at ***

答案1

得分: 2

对于自定义训练代码,Tune允许你将其封装在一个Function Trainable中,该Function Trainable将被传递给Tune,并为你提供一个解析后的配置字典。目前,你正在传递未解析的搜索空间对象(即由tune.choice生成的分类对象)。

from ray import air, tune
from ray.air import session

# 将其封装在一个函数中
def trainable(config: dict):
    # 你的训练代码...
    trainset = torchvision.datasets.MNIST(
        root='../data', train=True, download=True, transform=transforms.Compose([
                         transforms.ToTensor(),
                         transforms.Normalize((0.1307,), (0.3081,))
                     ]))
    testset = torchvision.datasets.MNIST(
        root='../data', train=False, download=True, transform=transforms.Compose([
                         transforms.ToTensor(),
                         transforms.Normalize((0.1307,), (0.3081,))
                     ]))

    train_loader = torch.utils.data.DataLoader(
      trainset,
      batch_size=config["batch_size"], shuffle=True)

    train_model(...)

config_set = {
    "lr": tune.loguniform(1e-4, 1e-1),
    "batch_size": tune.choice([16, 32, 64, 128])
}

tuner = tune.Tuner(
    trainable,
    param_space=config_set,
    run_config=air.RunConfig(
        failure_config=air.FailureConfig(fail_fast="raise")
    ),
)
results = tuner.fit()
英文:

For custom training code, Tune allows you to wrap it in a Function Trainable, which gets passed into Tune and provides you with a resolved config dict. Currently, you're passing in the unresolved search space object (the categorical object resulting from tune.choice).

from ray import air, tune
from ray.air import session

# Wrap it in a function
def trainable(config: dict):
    # Your training code...
    trainset = torchvision.datasets.MNIST(
        root=&#39;../data&#39;, train=True, download=True, transform=transforms.Compose([
                         transforms.ToTensor(),
                         transforms.Normalize((0.1307,), (0.3081,))
                     ]))
    testset = torchvision.datasets.MNIST(
        root=&#39;../data&#39;, train=False, download=True, transform=transforms.Compose([
                         transforms.ToTensor(),
                         transforms.Normalize((0.1307,), (0.3081,))
                     ]))

    train_loader = torch.utils.data.DataLoader(
      trainset,
      batch_size=config[&quot;batch_size&quot;], shuffle=True)

    train_model(...)

config_set = {
    &quot;lr&quot;: tune.loguniform(1e-4, 1e-1),
    &quot;batch_size&quot;: tune.choice([16, 32, 64,128])
}

tuner = tune.Tuner(
    trainable,
    param_space=config_set,
    run_config=air.RunConfig(
        failure_config=air.FailureConfig(fail_fast=&quot;raise&quot;)
    ),
)
results = tuner.fit()

huangapple
  • 本文由 发表于 2023年2月8日 22:46:16
  • 转载请务必保留本文链接:https://go.coder-hub.com/75387450.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定