如何使用Pandas查找各层楼中房间的相对份额。

huangapple go评论68阅读模式
英文:

How to use Pandas to find relative share of rooms in individual floors

问题

我有一个名为df的数据框,其结构如下:

  1. Floor Room Area
  2. 0 1 Living room 25
  3. 1 1 Kitchen 20
  4. 2 1 Bedroom 15
  5. 3 2 Bathroom 21
  6. 4 2 Bedroom 14

我想要添加一个名为floor_share的系列,用于表示给定楼层的相对份额/比率,以便数据框变成以下形式:

  1. Floor Room Area floor_share
  2. 0 1 Living room 18 0.30
  3. 1 1 Kitchen 18 0.30
  4. 2 1 Bedroom 24 0.40
  5. 3 2 Bathroom 10 0.67
  6. 4 2 Bedroom 20 0.33

如果可以使用一行代码(或任何其他习惯的方法)来完成此操作,我将非常高兴学习如何实现。

当前的解决方法

我已经找到了一个可以产生正确结果的方法,首先通过以下方式找到每个楼层的总面积:

  1. floor_area_sums = df.groupby('Floor')['Area'].sum()

这将产生以下结果:

  1. Floor
  2. 1 60
  3. 2 35
  4. Name: Area, dtype: int64

然后,我初始化了一个新的系列为0,并在遍历数据框行时找到正确的值:

  1. df["floor_share"] = 0
  2. for idx, row in df.iterrows():
  3. df.loc[idx, 'floor_share'] = df.loc[idx, 'Area'] / floor_area_sums[row.Floor]
英文:

I have a dataframe df with the following structure

  1. Floor Room Area
  2. 0 1 Living room 25
  3. 1 1 Kitchen 20
  4. 2 1 Bedroom 15
  5. 3 2 Bathroom 21
  6. 4 2 Bedroom 14

and I want to add a series floor_share with the relative share/ratio of the given floor, so that the dataframe becomes

  1. Floor Room Area floor_share
  2. 0 1 Living room 18 0,30
  3. 1 1 Kitchen 18 0,30
  4. 2 1 Bedroom 24 0,40
  5. 3 2 Bathroom 10 0,67
  6. 4 2 Bedroom 20 0,33

If it is possible to do this with a one-liner (or any other idiomatic manner), I'll be very happy to learn how.

Current workaround

What I have done that produces the correct results is to first find the total floor areas by

  1. floor_area_sums = df.groupby('Floor')['Area'].sum()

which gives

  1. Floor
  2. 1 60
  3. 2 35
  4. Name: Area, dtype: int64

I then initialize a new series to 0, and find the correct values while iterating through the dataframe rows.

  1. df["floor_share"] = 0
  2. for idx, row in df.iterrows():
  3. df.loc[idx, 'floor_share'] = df.loc[idx, 'Area']/floor_area_sums[row.Floor]

答案1

得分: 0

IIUC 使用:

  1. df["floor_share"] = df['Area'].div(df.groupby('Floor')['Area'].transform('sum'))
  2. print(df)

结果:

  1. Floor Room Area floor_share
  2. 0 1 Living room 18 0.300000
  3. 1 1 Kitchen 18 0.300000
  4. 2 1 Bedroom 24 0.400000
  5. 3 2 Bathroom 10 0.333333
  6. 4 2 Bedroom 20 0.666667
英文:

IIUC use:

  1. df["floor_share"] = df['Area'].div(df.groupby('Floor')['Area'].transform('sum'))
  2. print (df)
  3. Floor Room Area floor_share
  4. 0 1 Living room 18 0.300000
  5. 1 1 Kitchen 18 0.300000
  6. 2 1 Bedroom 24 0.400000
  7. 3 2 Bathroom 10 0.333333
  8. 4 2 Bedroom 20 0.666667

huangapple
  • 本文由 发表于 2023年2月8日 18:25:14
  • 转载请务必保留本文链接:https://go.coder-hub.com/75384384.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定