Binning error for a dataframe column – KeyError: "None of [Float64Index([61.5, 59.8, 56.8…. dtype='float64', length=53940)] are in the [columns]"

huangapple go评论80阅读模式
英文:

Binning error for a dataframe column - KeyError: "None of [Float64Index([61.5, 59.8, 56.8.... dtype='float64', length=53940)] are in the [columns]"

问题

我为数据框列编写了一个用于分箱数值的函数即将列值分成指定数量的类别

    def binning_fun(df, col_name, num_of_bins):
        lt=[]
        for i in range(0,num_of_bins):
            lt.append(i)
            df[col_name]=pd.cut(df[col_name],bins=i+1, labels=lt)
        return df
    
    df="C:/Users/shootings.csv"
    binning_fun(df, df['depth'], 4)

这导致以下错误

**"None of [Float64Index([61.5, 59.8, 56.9, 62.4, 63.3, 62.8, 62.3, 61.9, 65.1, 59.4,
              ...
              60.5, 59.8, 60.5, 61.2, 62.7, 60.8, 63.1, 62.8, 61.0, 62.2],
             dtype='float64', length=53940)] are in the [columns]"**

这些值确实存在于 'depth' 列中为什么会被认为不存在呢

我的数据集

        carat   cut     clarity     depth   table
    0   0.23    Ideal   SI2         61.5    55.0
    1   0.21    Premium SI1         59.8    61.0
    2   0.23    Good    VS1         56.9    65.0
    3   0.29    Premium VS2         62.4    58.0
    4   0.31    Good    SI2         63.3    58.0
    5   0.24    Good    VVS2 90.7  62.8

预期输出

    depth
    1
    0
    0
    1
    1
    2
英文:

I wrote a function for binning the numerical values of a dataframe column, i.e., dividing the column values into the specified number of categories.

def binning_fun(df, col_name, num_of_bins):
    lt=[]
    for i in range(0,num_of_bins):
        lt.append(i)
        df[col_name]=pd.cut(df[col_name],bins=i+1, labels=lt)
    return df

df="C:/Users/shootings.csv"
binning_fun(df, df['depth'], 4)

This gives the following error:

"None of [Float64Index([61.5, 59.8, 56.9, 62.4, 63.3, 62.8, 62.3, 61.9, 65.1, 59.4,\n ...\n 60.5, 59.8, 60.5, 61.2, 62.7, 60.8, 63.1, 62.8, 61.0, 62.2],\n dtype='float64', length=53940)] are in the [columns]"

These values do exist in the column 'depth'. Why are they being called inexistent?

My dataset:

		carat	cut		clarity	 depth	table	
0   	0.23	Ideal		SI2	 61.5	55.0	
1		0.21	Premium		SI1	 59.8	61.0	
2		0.23	Good		VS1	 56.9	65.0	
3		0.29	Premium		VS2	 62.4	58.0	
4		0.31	Good		SI2	 63.3	58.0	
5		0.24	Good		VVS2 90.7	62.8	

Expected output:

depth
1
0
0
1
1
2

答案1

得分: 1

你可以使用 cut 来获得固定的箱体大小:

def binning_fun(df, col_name, num_of_bins):
    df[col_name] = pd.cut(df[col_name], bins=num_of_bins, labels=range(num_of_bins))
    return df

df = pd.read_csv("C:/Users/shootings.csv")
binning_fun(df, 'depth', 4)

输出:

    carat   cut     clarity     depth   table
0   0.23    Ideal   SI2         0       55.00
1   0.21    Premium SI1         0       61.00
2   0.23    Good    VS1         0       65.00
3   0.29    Premium VS2         0       58.00
4   0.31    Good    SI2         0       58.00
5   0.24    Good    VVS2        3       62.80

或者使用 qcut 来获得等大小的桶:

def binning_fun(df, col_name, num_of_bins):
    df[col_name] = pd.qcut(df[col_name], q=num_of_bins, labels=range(num_of_bins))
    return df

df = pd.read_csv("C:/Users/shootings.csv")
binning_fun(df, 'depth', 4)

输出:

    carat   cut     clarity     depth   table
0   0.23    Ideal   SI2         1       55.00
1   0.21    Premium SI1         0       61.00
2   0.23    Good    VS1         0       65.00
3   0.29    Premium VS2         2       58.00
4   0.31    Good    SI2         3       58.00
5   0.24    Good    VVS2        3       62.80

希望这有所帮助。

英文:

You can use cut for fixed bin sizes:

def binning_fun(df, col_name, num_of_bins):
    df[col_name]=pd.cut(df[col_name], bins=num_of_bins, labels=range(num_of_bins))
    return df

df = pd.read_csv("C:/Users/shootings.csv")
binning_fun(df, 'depth', 4)

Output:

    carat	cut	    clarity	 depth	 table
0	0.23	Ideal	SI2	     0	     55.00
1	0.21	Premium	SI1  	 0	     61.00
2	0.23	Good	VS1	     0       65.00
3	0.29	Premium	VS2	     0       58.00
4	0.31	Good	SI2	     0       58.00
5	0.24	Good	VVS2	 3	     62.80

Or use qcut for equal-sized buckets:

def binning_fun(df, col_name, num_of_bins):
    df[col_name]=pd.qcut(df[col_name], q=num_of_bins, labels=range(num_of_bins))
    return df

df=pd.read_csv("C:/Users/shootings.csv")
binning_fun(df, 'depth', 4)

Output:

    carat	cut	    clarity	depth	table
0	0.23	Ideal	SI2	    1	    55.00
1	0.21	Premium	SI1	    0	    61.00
2	0.23	Good	VS1	    0	    65.00
3	0.29	Premium	VS2	    2	    58.00
4	0.31	Good	SI2	    3	    58.00
5	0.24	Good	VVS2	3	    62.80

I hope this helps.

huangapple
  • 本文由 发表于 2023年2月8日 14:56:02
  • 转载请务必保留本文链接:https://go.coder-hub.com/75382294.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定