在pandas中绘制特定列的饼图。

huangapple go评论75阅读模式
英文:

pie chart drawing for a specific column in pandas python

问题

I have a dataframe df, which has many columns. In df["house_electricity"], there are values like 1, 0 or blank/NA. I want to plot the column in terms of a pie chart, where the percentage of only 1 and 0 will be shown. Similarly, I want to plot another pie chart where the percentage of 1, 0, and blank/N.A all will be there.

| customer_id | house_electricity | house_refrigerator |
| -------- | -------- |
| cid01 | 0 | 0 |
| cid02 | 1 |na |
| cid03 | | 1 |
| cid04 |1 | |
| cid05 |na | 0 |

#I wrote the following but it didn't give me my expected result
import pandas as pd
import matplotlib.pyplot as plt

df = pd.read_csv("my_file.csv")

df_col = df.columns

df["house_electricity"].plot(kind="pie")
#I wrote the following but it didn't give me my expected result
import pandas as pd
import matplotlib.pyplot as plt

df = pd.read_csv("my_file.csv")

df_col = df.columns

df["house_electricity"].plot(kind="pie")
英文:

I have a dataframe df, which has many columns. In df["house_electricity"], there are values like 1,0 or blank/NA. I want to plot the column in terms of a pie chart, where percentage of only 1 and 0 will be shown. Similarly I want to plot another pie chart where percentage of 1,0 and blank/N.A all will be there.

| customer_id | house_electricity | house_refrigerator |
| -------- | -------- |
| cid01 | 0 | 0 |
| cid02 | 1 |na |
| cid03 | | 1 |
| cid04 |1 | |
| cid05 |na | 0 |

#I wrote the following but it didnt give my my expected result
import pandas as pd
import matplotlib.pyplot as plt

df=pd.read_csv("my_file.csv")

df_col=df.columns



df["house_electricity"].plot(kind="pie")
#I wrote the following but it didnt give my my expected result
import pandas as pd
import matplotlib.pyplot as plt

df=pd.read_csv("my_file.csv")

df_col=df.columns



df["house_electricity"].plot(kind="pie")

答案1

得分: 0

以下是代码的中文翻译部分:

# 创建一个数据框
df = pd.DataFrame({'a':[1,0,np.nan,1,1,1,'',0,0,np.nan]})
df

# 输出数据框
a
0	1
1	0
2	NaN
3	1
4	1
5	1
6	
7	0
8	0
9	NaN

# 使用下面的代码绘制饼图
df["a"].value_counts(dropna=False).plot(kind="pie")

如果您想要将缺失值和空值组合在一起,可以尝试用np.nan替换空值,然后绘制饼图:

# 用 np.nan 替换空值,然后绘制饼图
df["a"].replace("", np.nan).value_counts(dropna=False).plot(kind="pie")

这将生成第二张图示例。

英文:

For a dataframe

df = pd.DataFrame({'a':[1,0,np.nan,1,1,1,'',0,0,np.nan]})
df

a
0	1
1	0
2	NaN
3	1
4	1
5	1
6	
7	0
8	0
9	NaN

The code below will give

df["a"].value_counts(dropna=False).plot(kind="pie")

在pandas中绘制特定列的饼图。

If you want combine na and empty value, try replacing empty values with np.nan, then try to plot

df["a"].replace("", np.nan).value_counts(dropna=False).plot(kind="pie")

在pandas中绘制特定列的饼图。

答案2

得分: 0

以下是翻译好的代码部分:

import pandas as pd
import matplotlib.pyplot as plt

data = {'customer_id': ['cid01', 'cid02', 'cid03', 'cid04', 'cid05'],
        'house_electricity': [0, 1, None, 1, None],
        'house_refrigerator': [0, None, 1, None, 0]}

df = pd.DataFrame(data)

counts = df['house_electricity'].value_counts(dropna=False)
counts.plot.pie(autopct='%1.1f%%', labels=['0', '1', 'NaN'], shadow=True)

plt.title('house_electricity列的百分比分布')

plt.axis('equal')
plt.show()

希望这对你有所帮助。

英文:

For solution you need to try with this code to generate 3 blocks.

import pandas as pd
import matplotlib.pyplot as plt

data = {'customer_id': ['cid01', 'cid02', 'cid03', 'cid04', 'cid05'],
        'house_electricity': [0, 1, None, 1, None],
        'house_refrigerator': [0, None, 1, None, 0]}

df = pd.DataFrame(data)

counts = df['house_electricity'].value_counts(dropna=False)
counts.plot.pie(autopct='%1.1f%%', labels=['0', '1', 'NaN'], shadow=True)

plt.title('Percentage distribution of house_electricity column')

plt.axis('equal')
plt.show()

Result:

在pandas中绘制特定列的饼图。

huangapple
  • 本文由 发表于 2023年2月8日 13:39:53
  • 转载请务必保留本文链接:https://go.coder-hub.com/75381736.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定