如何在Polars中模仿Pandas的基于索引的查询?

huangapple go评论71阅读模式
英文:

how to imitate Pandas' index-based querying in Polars?

问题

# 使用 Polars 模仿下面的 Pandas 代码,但保持相同的顺序
df = pl.DataFrame(data=([21, 123], [132, 412], [23, 43]), schema=['c1', 'c2'])
rows_to_select = [23, 132]
selected_rows = df.filter(pl.col('c1').is_in(rows_to_select))
selected_rows = selected_rows.with_column(pl.when(pl.col('c1') == rows_to_select[0], 1).otherwise(0).alias('order'))
selected_rows = selected_rows.sort('order', reverse=True).drop_column('order')
print(selected_rows)
英文:

Any idea what I can do to imitate the below pandas code using polars? Polars doesn't have indexes like pandas so I couldn't figure out what I can do .

df = pd.DataFrame(data = ([21,123], [132,412], [23, 43]), columns = ['c1', 'c2']).set_index("c1")
print(df.loc[[23, 132]])

and it prints

c1 c2
23 43
132 412

the only polars conversion I could figure out to do is

df = pl.DataFrame(data = ([21,123], [132,412], [23, 43]), schema = ['c1', 'c2'])
print(df.filter(pl.col("c1").is_in([23, 132])))

but it prints

c1 c2
132 412
23 43

which is okay but the rows are not in the order I gave. I gave [23, 132] and want the output rows to be in the same order, like how pandas' output has.

I can use a sort() later yes, but the original data I use this on has like 30Million rows so I'm looking for something that's as fast as possible.

答案1

得分: 6

我建议使用left join来实现这个目标。这将保持与你的索引值列表相对应的顺序。而且这种方法性能很好。

例如,让我们从这个打乱顺序的DataFrame开始。

nbr_rows = 30_000_000

df = pl.DataFrame({
    'c1': pl.arange(0, nbr_rows, eager=True).shuffle(2),
    'c2': pl.arange(0, nbr_rows, eager=True).shuffle(3),
})
df
shape: (30000000, 2)
┌──────────┬──────────┐
│ c1       ┆ c2       │
│ ---      ┆ ---      │
│ i64      ┆ i64      │
╞══════════╪══════════╡
│ 4052015  ┆ 20642741 │
│ 7787054  ┆ 17007051 │
│ 20246150 ┆ 19445431 │
│ 1309992  ┆ 6495751  │
│ ...      ┆ ...      │
│ 10371090 ┆ 4791782  │
│ 26281644 ┆ 12350777 │
│ 6740626  ┆ 24888572 │
│ 22573405 ┆ 14885989 │
└──────────┴──────────┘

以及这些索引值:

nbr_index_values = 10_000
s1 = pl.Series(name='c1', values=pl.arange(0, nbr_index_values, eager=True).shuffle())
s1
shape: (10000,)
Series: 'c1' [i64]
[
        1754
        6716
        3485
        7058
        7216
        1040
        1832
        3921
        1639
        6734
        5560
        7596
        ...
        4243
        4455
        894
        7806
        9291
        1883
        9947
        3309
        2030
        7731
        4706
        8528
        8426
]

现在,我们执行一个left join来获取与索引值对应的行。(请注意,索引值列表是这个连接中的左侧DataFrame。)

start = time.perf_counter()
df2 = (
    s1.to_frame()
    .join(
        df,
        on='c1',
        how='left'
    )
)
print(time.perf_counter() - start)

df2
>>> print(time.perf_counter() - start)
0.8427023889998964
shape: (10000, 2)
┌──────┬──────────┐
│ c1   ┆ c2       │
│ ---  ┆ ---      │
│ i64  ┆ i64      │
╞══════╪══════════╡
│ 1754 ┆ 15734441 │
│ 6716 ┆ 20631535 │
│ 3485 ┆ 20199121 │
│ 7058 ┆ 15881128 │
│ ...  ┆ ...      │
│ 7731 ┆ 19420197 │
│ 4706 ┆ 16918008 │
│ 8528 ┆ 5278904  │
│ 8426 ┆ 18927935 │
└──────┴──────────┘

注意行的顺序与索引值相同。我们可以验证这一点:

s1.series_equal(df2.get_column('c1'), strict=True)
>>> s1.series_equal(df2.get_column('c1'), strict=True)
True

而且性能相当不错。在我的32核系统上,这不到一秒钟。

英文:

I suggest using a left join to accomplish this. This will maintain the order corresponding to your list of index values. (And it is quite performant.)

For example, let's start with this shuffled DataFrame.

nbr_rows = 30_000_000

df = pl.DataFrame({
    'c1': pl.arange(0, nbr_rows, eager=True).shuffle(2),
    'c2': pl.arange(0, nbr_rows, eager=True).shuffle(3),
})
df
shape: (30000000, 2)
┌──────────┬──────────┐
│ c1       ┆ c2       │
│ ---      ┆ ---      │
│ i64      ┆ i64      │
╞══════════╪══════════╡
│ 4052015  ┆ 20642741 │
│ 7787054  ┆ 17007051 │
│ 20246150 ┆ 19445431 │
│ 1309992  ┆ 6495751  │
│ ...      ┆ ...      │
│ 10371090 ┆ 4791782  │
│ 26281644 ┆ 12350777 │
│ 6740626  ┆ 24888572 │
│ 22573405 ┆ 14885989 │
└──────────┴──────────┘

And these index values:

nbr_index_values = 10_000
s1 = pl.Series(name='c1', values=pl.arange(0, nbr_index_values, eager=True).shuffle())
s1
shape: (10000,)
Series: 'c1' [i64]
[
        1754
        6716
        3485
        7058
        7216
        1040
        1832
        3921
        1639
        6734
        5560
        7596
        ...
        4243
        4455
        894
        7806
        9291
        1883
        9947
        3309
        2030
        7731
        4706
        8528
        8426
]

We now perform a left join to obtain the rows corresponding to the index values. (Note that the list of index values is the left DataFrame in this join.)

start = time.perf_counter()
df2 = (
    s1.to_frame()
    .join(
        df,
        on='c1',
        how='left'
    )
)
print(time.perf_counter() - start)

df2
>>> print(time.perf_counter() - start)
0.8427023889998964
shape: (10000, 2)
┌──────┬──────────┐
│ c1   ┆ c2       │
│ ---  ┆ ---      │
│ i64  ┆ i64      │
╞══════╪══════════╡
│ 1754 ┆ 15734441 │
│ 6716 ┆ 20631535 │
│ 3485 ┆ 20199121 │
│ 7058 ┆ 15881128 │
│ ...  ┆ ...      │
│ 7731 ┆ 19420197 │
│ 4706 ┆ 16918008 │
│ 8528 ┆ 5278904  │
│ 8426 ┆ 18927935 │
└──────┴──────────┘

Notice how the rows are in the same order as the index values. We can verify this:

s1.series_equal(df2.get_column('c1'), strict=True)
>>> s1.series_equal(df2.get_column('c1'), strict=True)
True

And the performance is quite good. On my 32-core system, this takes less than a second.

huangapple
  • 本文由 发表于 2023年2月8日 13:12:40
  • 转载请务必保留本文链接:https://go.coder-hub.com/75381589.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定