使用C++部署经过训练的YOLOv7模型

huangapple go评论68阅读模式
英文:

Deploying a YOLOv7 trained model using C++

问题

我已经为您翻译了代码部分,以下是翻译好的部分:

#include <fstream>
#include <sstream>
#include <iostream>
#include <opencv2/dnn.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>

using namespace cv;
using namespace dnn;
using namespace std;

struct Net_config
{
    float confThreshold; // 置信度阈值
    float nmsThreshold;  // 非极大值抑制阈值
    string modelpath;
};

class YOLOV7
{
public:
    YOLOV7(Net_config config);
    void detect(Mat& frame);
private:
    int inpWidth;
    int inpHeight;
    vector<string> class_names;
    int num_class;

    float confThreshold;
    float nmsThreshold;
    Net net;
    void drawPred(float conf, int left, int top, int right, int bottom, Mat& frame, int classid);
};

YOLOV7::YOLOV7(Net_config config)
{
    this->confThreshold = config.confThreshold;
    this->nmsThreshold = config.nmsThreshold;

    //this->net = readNetFromONNX(config.modelpath);
    this->net = readNetFromONNX("yolov7.onnx");
    ifstream ifs("coco.names");
    string line;
    while (getline(ifs, line)) this->class_names.push_back(line);
    this->num_class = class_names.size();

    size_t pos = config.modelpath.find("_");
    int len = config.modelpath.length() - 6 - pos;
    string hxw = config.modelpath.substr(pos + 1, len);
    pos = hxw.find("x");
    string h = hxw.substr(0, pos);
    len = hxw.length() - pos;
    string w = hxw.substr(pos + 1, len);
    this->inpHeight = stoi(h);
    this->inpWidth = stoi(w);
}

void YOLOV7::drawPred(float conf, int left, int top, int right, int bottom, Mat& frame, int classid)
{
    // 画出预测的边界框
    rectangle(frame, Point(left, top), Point(right, bottom), Scalar(0, 0, 255), 2);

    // 获取类别名称和置信度
    string label = format("%.2f", conf);
    label = this->class_names[classid] + ":" + label;

    // 在边界框的顶部显示标签
    int baseLine;
    Size labelSize = getTextSize(label, FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);
    top = max(top, labelSize.height);
    // rectangle(frame, Point(left, top - int(1.5 * labelSize.height)), Point(left + int(1.5 * labelSize.width), top + baseLine), Scalar(0, 255, 0), FILLED);
    putText(frame, label, Point(left, top), FONT_HERSHEY_SIMPLEX, 0.75, Scalar(0, 255, 0), 1);
}

void YOLOV7::detect(Mat& frame)
{
    Mat blob = blobFromImage(frame, 1 / 255.0, Size(this->inpWidth, this->inpHeight), Scalar(0, 0, 0), true, false);
    this->net.setInput(blob);
    vector<Mat> outs;
    this->net.forward(outs, this->net.getUnconnectedOutLayersNames());

    int num_proposal = outs[0].size[0];
    int nout = outs[0].size[1];
    if (outs[0].dims > 2)
    {
        num_proposal = outs[0].size[1];
        nout = outs[0].size[2];
        outs[0] = outs[0].reshape(0, num_proposal);
    }
    // 生成候选框
    vector<float> confidences;
    vector<Rect> boxes;
    vector<int> classIds;
    float ratioh = (float)frame.rows / this->inpHeight, ratiow = (float)frame.cols / this->inpWidth;
    int n = 0, row_ind = 0;
    float* pdata = (float*)outs[0].data;
    for (n = 0; n < num_proposal; n++)
    {
        float box_score = pdata[4];
        if (box_score > this->confThreshold)
        {
            Mat scores = outs[0].row(row_ind).colRange(5, nout);
            Point classIdPoint;
            double max_class_socre;
            minMaxLoc(scores, 0, &max_class_socre, 0, &classIdPoint);
            max_class_socre *= box_score;
            if (max_class_socre > this->confThreshold)
            {
                const int class_idx = classIdPoint.x;
                float cx = pdata[0] * ratiow;
                float cy = pdata[1] * ratioh;
                float w = pdata[2] * ratiow;
                float h = pdata[3] * ratioh;

                int left = int(cx - 0.5 * w);
                int top = int(cy - 0.5 * h);

                confidences.push_back((float)max_class_socre);
                boxes.push_back(Rect(left, top, (int)(w), (int)(h)));
                classIds.push_back(class_idx);
            }
        }
        row_ind++;
        pdata += nout;
    }

    // 使用非极大值抑制来消除重叠的置信度较低的边界框
    vector<int> indices;
    dnn::NMSBoxes(boxes, confidences, this->confThreshold, this->nmsThreshold, indices);
    for (size_t i = 0; i < indices.size(); ++i)
    {
        int idx = indices[i];
        Rect box = boxes[idx];
        this->drawPred(confidences[idx], box.x, box.y,
            box.x + box.width, box.y + box.height, frame, classIds[idx]);
    }
}

int main()
{
    Net_config YOLOV7_nets = { 0.3, 0.5, "yolov7.onnx" };
    YOLOV7 net(YOLOV7_nets);
    string imgpath = "frame1.png";
    Mat srcimg = imread(imgpath);
    net.detect(srcimg);

    static const string kWinName = "Deep learning object detection in OpenCV";
    namedWindow(kWinName, WINDOW_NORMAL);
    imshow(kWinName, srcimg);
    system("pause");
    waitKey(0);
    destroyAllWindows();
}

如果您需要关于代码的进一步解释或帮助,请随时提问。

英文:

I have trained a YOLOv7 model on a custom dataset. I want to use the trained model in my C++ project. I tried to do so using .pt weights and .onnx weights, but I'm continuously getting errors.

As advised here, I performed 'Reparameterization' on the .pt file, before converting it into .onnx.

In the current trial, I followed this repository, and I used the following code:

#include &lt;fstream&gt;
#include &lt;sstream&gt;
#include &lt;iostream&gt;
#include &lt;opencv2/dnn.hpp&gt;
#include &lt;opencv2/imgproc.hpp&gt;
#include &lt;opencv2/highgui.hpp&gt;
using namespace cv;
using namespace dnn;
using namespace std;
struct Net_config
{
float confThreshold; // Confidence threshold
float nmsThreshold;  // Non-maximum suppression threshold
string modelpath;
};
class YOLOV7
{
public:
YOLOV7(Net_config config);
void detect(Mat&amp; frame);
private:
int inpWidth;
int inpHeight;
vector&lt;string&gt; class_names;
int num_class;
float confThreshold;
float nmsThreshold;
Net net;
void drawPred(float conf, int left, int top, int right, int bottom, Mat&amp; frame, int classid);
};
YOLOV7::YOLOV7(Net_config config)
{
this-&gt;confThreshold = config.confThreshold;
this-&gt;nmsThreshold = config.nmsThreshold;
//this-&gt;net = readNetFromONNX(config.modelpath);
this-&gt;net = readNetFromONNX(&quot;yolov7.onnx&quot;);
ifstream ifs(&quot;coco.names&quot;);
string line;
while (getline(ifs, line)) this-&gt;class_names.push_back(line);
this-&gt;num_class = class_names.size();
size_t pos = config.modelpath.find(&quot;_&quot;);
int len = config.modelpath.length() - 6 - pos;
string hxw = config.modelpath.substr(pos + 1, len);
pos = hxw.find(&quot;x&quot;);
string h = hxw.substr(0, pos);
len = hxw.length() - pos;
string w = hxw.substr(pos + 1, len);
this-&gt;inpHeight = stoi(h);
this-&gt;inpWidth = stoi(w);
}
void YOLOV7::drawPred(float conf, int left, int top, int right, int bottom, Mat&amp; frame, int classid)   // Draw the predicted bounding box
{
//Draw a rectangle displaying the bounding box
rectangle(frame, Point(left, top), Point(right, bottom), Scalar(0, 0, 255), 2);
//Get the label for the class name and its confidence
string label = format(&quot;%.2f&quot;, conf);
label = this-&gt;class_names[classid] + &quot;:&quot; + label;
//Display the label at the top of the bounding box
int baseLine;
Size labelSize = getTextSize(label, FONT_HERSHEY_SIMPLEX, 0.5, 1, &amp;baseLine);
top = max(top, labelSize.height);
//rectangle(frame, Point(left, top - int(1.5 * labelSize.height)), Point(left + int(1.5 * labelSize.width), top + baseLine), Scalar(0, 255, 0), FILLED);
putText(frame, label, Point(left, top), FONT_HERSHEY_SIMPLEX, 0.75, Scalar(0, 255, 0), 1);
}
void YOLOV7::detect(Mat&amp; frame)
{
Mat blob = blobFromImage(frame, 1 / 255.0, Size(this-&gt;inpWidth, this-&gt;inpHeight), Scalar(0, 0, 0), true, false);
this-&gt;net.setInput(blob);
vector&lt;Mat&gt; outs;
this-&gt;net.forward(outs, this-&gt;net.getUnconnectedOutLayersNames());
int num_proposal = outs[0].size[0];
int nout = outs[0].size[1];
if (outs[0].dims &gt; 2)
{
num_proposal = outs[0].size[1];
nout = outs[0].size[2];
outs[0] = outs[0].reshape(0, num_proposal);
}
/////generate proposals
vector&lt;float&gt; confidences;
vector&lt;Rect&gt; boxes;
vector&lt;int&gt; classIds;
float ratioh = (float)frame.rows / this-&gt;inpHeight, ratiow = (float)frame.cols / this-&gt;inpWidth;
int n = 0, row_ind = 0; ///cx,cy,w,h,box_score,class_score
float* pdata = (float*)outs[0].data;
for (n = 0; n &lt; num_proposal; n++)   ///&#204;&#216;&#213;&#247;&#205;&#188;&#179;&#223;&#182;&#200;
{
float box_score = pdata[4];
if (box_score &gt; this-&gt;confThreshold)
{
Mat scores = outs[0].row(row_ind).colRange(5, nout);
Point classIdPoint;
double max_class_socre;
// Get the value and location of the maximum score
minMaxLoc(scores, 0, &amp;max_class_socre, 0, &amp;classIdPoint);
max_class_socre *= box_score;
if (max_class_socre &gt; this-&gt;confThreshold)
{
const int class_idx = classIdPoint.x;
float cx = pdata[0] * ratiow;  ///cx
float cy = pdata[1] * ratioh;   ///cy
float w = pdata[2] * ratiow;   ///w
float h = pdata[3] * ratioh;  ///h
int left = int(cx - 0.5 * w);
int top = int(cy - 0.5 * h);
confidences.push_back((float)max_class_socre);
boxes.push_back(Rect(left, top, (int)(w), (int)(h)));
classIds.push_back(class_idx);
}
}
row_ind++;
pdata += nout;
}
// Perform non maximum suppression to eliminate redundant overlapping boxes with
// lower confidences
vector&lt;int&gt; indices;
dnn::NMSBoxes(boxes, confidences, this-&gt;confThreshold, this-&gt;nmsThreshold, indices);
for (size_t i = 0; i &lt; indices.size(); ++i)
{
int idx = indices[i];
Rect box = boxes[idx];
this-&gt;drawPred(confidences[idx], box.x, box.y,
box.x + box.width, box.y + box.height, frame, classIds[idx]);
}
}
int main()
{
Net_config YOLOV7_nets = { 0.3, 0.5, &quot;yolov7.onnx&quot; };   ////choices=[&quot;models/yolov7_640x640.onnx&quot;, &quot;models/yolov7-tiny_640x640.onnx&quot;, &quot;models/yolov7_736x1280.onnx&quot;, &quot;models/yolov7-tiny_384x640.onnx&quot;, &quot;models/yolov7_480x640.onnx&quot;, &quot;models/yolov7_384x640.onnx&quot;, &quot;models/yolov7-tiny_256x480.onnx&quot;, &quot;models/yolov7-tiny_256x320.onnx&quot;, &quot;models/yolov7_256x320.onnx&quot;, &quot;models/yolov7-tiny_256x640.onnx&quot;, &quot;models/yolov7_256x640.onnx&quot;, &quot;models/yolov7-tiny_480x640.onnx&quot;, &quot;models/yolov7-tiny_736x1280.onnx&quot;, &quot;models/yolov7_256x480.onnx&quot;]
YOLOV7 net(YOLOV7_nets);
string imgpath = &quot;frame1.png&quot;;
Mat srcimg = imread(imgpath);
net.detect(srcimg);
static const string kWinName = &quot;Deep learning object detection in OpenCV&quot;;
namedWindow(kWinName, WINDOW_NORMAL);
imshow(kWinName, srcimg);
system(&quot;pause&quot;);
waitKey(0);
destroyAllWindows();
}

However, I got the following error:

OpenCV: terminate handler is called! The last OpenCV error is:
OpenCV(4.1.1) Error: Unsupported format or combination of formats (Failed to parse onnx model) in cv::dnn::dnn4_v20190621::ONNXImporter::ONNXImporter, file C:\opencv-4.1.1\modules\dnn\src\onnx\onnx_importer.cpp, line 57

Here is a link to my 'yolov7.onnx' file, and here is a link to 'frame1.png'

The model is trained to detect 1 class, which is 'Potholes' in roads.

Currently, I have visual studio 2019, and opencv 4.1.1.

Should I upgrade to another opencv version?

Pls guide me to any possible solutions, so that I can successfully deploy the YOLOv7 model using C++.

答案1

得分: 0

我升级到 Opencv 4.6.0。

另外,我发现我没有把 .onnx 文件和图像文件放在与 .exe 文件相同的文件夹中。

以下是代码的最终状态(但如上所述,.onnx 文件和图像文件的路径应该正确指定):

#include <fstream>
#include <sstream>
#include <iostream>
#include <opencv2/dnn.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>

using namespace cv;
using namespace dnn;
using namespace std;

struct Net_config
{
    float confThreshold; // 置信度阈值
    float nmsThreshold;  // 非最大抑制阈值
    string modelpath;
};

class YOLOV7
{
public:
    YOLOV7(Net_config config);
    void detect(Mat& frame);
private:
    int inpWidth;
    int inpHeight;
    vector<string> class_names;
    int num_class;

    float confThreshold;
    float nmsThreshold;
    Net net;
    void drawPred(float conf, int left, int top, int right, int bottom, Mat& frame, int classid);
};

YOLOV7::YOLOV7(Net_config config)
{
    this->confThreshold = config.confThreshold;
    this->nmsThreshold = config.nmsThreshold;

    //this->net = readNetFromONNX(config.modelpath);
    this->net = readNetFromONNX("yolov7.onnx");
    //ifstream ifs("coco.names");
    ifstream ifs("Potholes.names");
    string line;
    while (getline(ifs, line)) this->class_names.push_back(line);
    this->num_class = class_names.size();

    this->inpHeight = 640;//stoi(h);
    this->inpWidth = 640;//stoi(w);
}

void YOLOV7::drawPred(float conf, int left, int top, int right, int bottom, Mat& frame, int classid)   // 画出预测的边界框
{
    // 画一个显示边界框的矩形
    rectangle(frame, Point(left, top), Point(right, bottom), Scalar(0, 0, 255), 2);

    // 获取类名及其置信度的标签
    string label = format("%.2f", conf);
    label = this->class_names[classid] + ":" + label;

    // 在边界框顶部显示标签
    int baseLine;
    Size labelSize = getTextSize(label, FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);
    top = max(top, labelSize.height);
    putText(frame, label, Point(left, top), FONT_HERSHEY_SIMPLEX, 0.75, Scalar(0, 255, 0), 1);
}

void YOLOV7::detect(Mat& frame)
{
    Mat blob = blobFromImage(frame, 1 / 255.0, Size(this->inpWidth, this->inpHeight), Scalar(0, 0, 0), true, false);
    this->net.setInput(blob);
    vector<Mat> outs;
    this->net.forward(outs, this->net.getUnconnectedOutLayersNames());

    int num_proposal = outs[0].size[0];
    int nout = outs[0].size[1];
    if (outs[0].dims > 2)
    {
        num_proposal = outs[0].size[1];
        nout = outs[0].size[2];
        outs[0] = outs[0].reshape(0, num_proposal);
    }

    // 生成提案
    vector<float> confidences;
    vector<Rect> boxes;
    vector<int> classIds;
    float ratioh = (float)frame.rows / this->inpHeight, ratiow = (float)frame.cols / this->inpWidth;
    int n = 0, row_ind = 0;
    float* pdata = (float*)outs[0].data;
    for (n = 0; n < num_proposal; n++)
    {
        float box_score = pdata[4];
        if (box_score > this->confThreshold)
        {
            Mat scores = outs[0].row(row_ind).colRange(5, nout);
            Point classIdPoint;
            double max_class_socre;
            // 获取最大分数的值和位置
            minMaxLoc(scores, 0, &max_class_socre, 0, &classIdPoint);
            max_class_socre *= box_score;
            if (max_class_socre > this->confThreshold)
            {
                const int class_idx = classIdPoint.x;
                float cx = pdata[0] * ratiow;  
                float cy = pdata[1] * ratioh;   
                float w = pdata[2] * ratiow;   
                float h = pdata[3] * ratioh;  

                int left = int(cx - 0.5 * w);
                int top = int(cy - 0.5 * h);

                confidences.push_back((float)max_class_socre);
                boxes.push_back(Rect(left, top, (int)(w), (int)(h)));
                classIds.push_back(class_idx);
            }
        }
        row_ind++;
        pdata += nout;
    }

    // 执行非最大抑制以消除具有较低置信度的冗余重叠框
    vector<int> indices;
    dnn::NMSBoxes(boxes, confidences, this->confThreshold, this->nmsThreshold, indices);
    for (size_t i = 0; i < indices.size(); ++i)
    {
        int idx = indices[i];
        Rect box = boxes[idx];
        this->drawPred(confidences[idx], box.x, box.y,
            box.x + box.width, box.y + box.height, frame, classIds[idx]);
    }
}

int main()try
{
    int img_index = 0;
    Net_config YOLOV7_nets = { 0.3, 0.5, "yolov7.onnx" };
    YOLOV7 net(YOLOV7_nets);
    
    while (img_index <= 822)
    {
        string base_path = "D:/Post_Grad/STDF/Depth_estimation-master/workspace/test_vid/pngFrames/frame";
        string imgpath = base_path + to_string(img_index) + ".png";
        Mat srcimg = imread(imgpath);
        net.detect(srcimg);

        static const string kWinName = "Deep learning object detection in OpenCV";
        namedWindow(kWinName, WINDOW_NORMAL);
        imshow(kWinName, srcimg);
        waitKey(1);
        img_index++;
    }
    destroyAllWindows();
}
catch (const std::exception& e)
{
    std::cerr << e.what() << std::endl;
    system("pause");
    return EXIT_FAILURE;
}
英文:

I upgraded to Opencv 4.6.0.

Also, I discovered that I wasn't placing the .onnx and the image files in the same folder as the .exe file.

The following is the code in it's final status (but as I said above, the paths of the .onnx file, and the image files should be specified correctly):

#include &lt;fstream&gt;
#include &lt;sstream&gt;
#include &lt;iostream&gt;
#include &lt;opencv2/dnn.hpp&gt;
#include &lt;opencv2/imgproc.hpp&gt;
#include &lt;opencv2/highgui.hpp&gt;
using namespace cv;
using namespace dnn;
using namespace std;
struct Net_config
{
float confThreshold; // Confidence threshold
float nmsThreshold;  // Non-maximum suppression threshold
string modelpath;
};
class YOLOV7
{
public:
YOLOV7(Net_config config);
void detect(Mat&amp; frame);
private:
int inpWidth;
int inpHeight;
vector&lt;string&gt; class_names;
int num_class;
float confThreshold;
float nmsThreshold;
Net net;
void drawPred(float conf, int left, int top, int right, int bottom, Mat&amp; frame, int classid);
};
YOLOV7::YOLOV7(Net_config config)
{
this-&gt;confThreshold = config.confThreshold;
this-&gt;nmsThreshold = config.nmsThreshold;
//this-&gt;net = readNetFromONNX(config.modelpath);
this-&gt;net = readNetFromONNX(&quot;yolov7.onnx&quot;);
//ifstream ifs(&quot;coco.names&quot;);
ifstream ifs(&quot;Potholes.names&quot;);
string line;
while (getline(ifs, line)) this-&gt;class_names.push_back(line);
this-&gt;num_class = class_names.size();
this-&gt;inpHeight = 640;//stoi(h);
this-&gt;inpWidth = 640;//stoi(w);
}
void YOLOV7::drawPred(float conf, int left, int top, int right, int bottom, Mat&amp; frame, int classid)   // Draw the predicted bounding box
{
//Draw a rectangle displaying the bounding box
rectangle(frame, Point(left, top), Point(right, bottom), Scalar(0, 0, 255), 2);
//Get the label for the class name and its confidence
string label = format(&quot;%.2f&quot;, conf);
label = this-&gt;class_names[classid] + &quot;:&quot; + label;
//Display the label at the top of the bounding box
int baseLine;
Size labelSize = getTextSize(label, FONT_HERSHEY_SIMPLEX, 0.5, 1, &amp;baseLine);
top = max(top, labelSize.height);
//rectangle(frame, Point(left, top - int(1.5 * labelSize.height)), Point(left + int(1.5 * labelSize.width), top + baseLine), Scalar(0, 255, 0), FILLED);
putText(frame, label, Point(left, top), FONT_HERSHEY_SIMPLEX, 0.75, Scalar(0, 255, 0), 1);
}
void YOLOV7::detect(Mat&amp; frame)
{
Mat blob = blobFromImage(frame, 1 / 255.0, Size(this-&gt;inpWidth, this-&gt;inpHeight), Scalar(0, 0, 0), true, false);
this-&gt;net.setInput(blob);
vector&lt;Mat&gt; outs;
this-&gt;net.forward(outs, this-&gt;net.getUnconnectedOutLayersNames());
int num_proposal = outs[0].size[0];
int nout = outs[0].size[1];
if (outs[0].dims &gt; 2)
{
num_proposal = outs[0].size[1];
nout = outs[0].size[2];
outs[0] = outs[0].reshape(0, num_proposal);
}
/////generate proposals
vector&lt;float&gt; confidences;
vector&lt;Rect&gt; boxes;
vector&lt;int&gt; classIds;
float ratioh = (float)frame.rows / this-&gt;inpHeight, ratiow = (float)frame.cols / this-&gt;inpWidth;
int n = 0, row_ind = 0; ///cx,cy,w,h,box_score,class_score
float* pdata = (float*)outs[0].data;
for (n = 0; n &lt; num_proposal; n++)   ///&#204;&#216;&#213;&#247;&#205;&#188;&#179;&#223;&#182;&#200;
{
float box_score = pdata[4];
if (box_score &gt; this-&gt;confThreshold)
{
Mat scores = outs[0].row(row_ind).colRange(5, nout);
Point classIdPoint;
double max_class_socre;
// Get the value and location of the maximum score
minMaxLoc(scores, 0, &amp;max_class_socre, 0, &amp;classIdPoint);
max_class_socre *= box_score;
if (max_class_socre &gt; this-&gt;confThreshold)
{
const int class_idx = classIdPoint.x;
float cx = pdata[0] * ratiow;  ///cx
float cy = pdata[1] * ratioh;   ///cy
float w = pdata[2] * ratiow;   ///w
float h = pdata[3] * ratioh;  ///h
int left = int(cx - 0.5 * w);
int top = int(cy - 0.5 * h);
confidences.push_back((float)max_class_socre);
boxes.push_back(Rect(left, top, (int)(w), (int)(h)));
classIds.push_back(class_idx);
}
}
row_ind++;
pdata += nout;
}
// Perform non maximum suppression to eliminate redundant overlapping boxes with
// lower confidences
vector&lt;int&gt; indices;
dnn::NMSBoxes(boxes, confidences, this-&gt;confThreshold, this-&gt;nmsThreshold, indices);
for (size_t i = 0; i &lt; indices.size(); ++i)
{
int idx = indices[i];
Rect box = boxes[idx];
this-&gt;drawPred(confidences[idx], box.x, box.y,
box.x + box.width, box.y + box.height, frame, classIds[idx]);
}
}
int main()try
{
int img_index = 0;
Net_config YOLOV7_nets = { 0.3, 0.5, &quot;yolov7.onnx&quot; };   ////choices=[&quot;models/yolov7_640x640.onnx&quot;, &quot;models/yolov7-tiny_640x640.onnx&quot;, &quot;models/yolov7_736x1280.onnx&quot;, &quot;models/yolov7-tiny_384x640.onnx&quot;, &quot;models/yolov7_480x640.onnx&quot;, &quot;models/yolov7_384x640.onnx&quot;, &quot;models/yolov7-tiny_256x480.onnx&quot;, &quot;models/yolov7-tiny_256x320.onnx&quot;, &quot;models/yolov7_256x320.onnx&quot;, &quot;models/yolov7-tiny_256x640.onnx&quot;, &quot;models/yolov7_256x640.onnx&quot;, &quot;models/yolov7-tiny_480x640.onnx&quot;, &quot;models/yolov7-tiny_736x1280.onnx&quot;, &quot;models/yolov7_256x480.onnx&quot;]
YOLOV7 net(YOLOV7_nets);
while (img_index &lt;= 822)
{
string base_path = &quot;D:/Post_Grad/STDF/Depth_estimation-master/workspace/test_vid/pngFrames/frame&quot;;
//string imgpath = &quot;frame1.png&quot;;
string imgpath = base_path + to_string(img_index) + &quot;.png&quot;;
Mat srcimg = imread(imgpath);
net.detect(srcimg);
static const string kWinName = &quot;Deep learning object detection in OpenCV&quot;;
namedWindow(kWinName, WINDOW_NORMAL);
imshow(kWinName, srcimg);
waitKey(1);
img_index++;
}
destroyAllWindows();
}
catch (const std::exception&amp; e)
{
std::cerr &lt;&lt; e.what() &lt;&lt; std::endl;
system(&quot;pause&quot;);
return EXIT_FAILURE;
}

huangapple
  • 本文由 发表于 2023年2月7日 05:12:10
  • 转载请务必保留本文链接:https://go.coder-hub.com/75366632.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定