英文:
apply function in pandas hierarchical index
问题
   points  tiger  lion     bear
0     425     72  1878  1.40000
1     441   -211 -5238 -4.00000
2    1048     47 -1266  2.90000
英文:
I have a pandas dataframe as below.
df = pd.DataFrame({'team' : ['A', 'B', 'A', 'B', 'A', 'B'],
                   'tiger' : [87, 159, 351, 140, 72, 119],
                   'lion' : [1843, 3721, 6905, 1667, 2865, 1599],
                   'bear' : [1.9, 3.3, 6.3, 2.3, 1.2, 4.1],
                   'points' : [425, 425, 441, 441, 1048, 1048]})
grouped = df.groupby(['points', 'team'])[['tiger', 'lion', 'bear']].median()
print(grouped)
                tiger       lion    bear
points team                             
425    A     87.00000 1843.00000 1.90000
       B    159.00000 3721.00000 3.30000
441    A    351.00000 6905.00000 6.30000
       B    140.00000 1667.00000 2.30000
1048   A     72.00000 2865.00000 1.20000
       B    119.00000 1599.00000 4.10000
I would like to take the difference between teams A and B for each of the animal (tiger, lion, bear) and points levels. So the difference between team A (87) and B (159) within points 425 and tiger. I'm not sure how to do this with an hierarchical index. It would look something like below. Thanks.
   points  tiger  lion     bear
0     425     72  1878  1.40000
1     441   -211 -5238 -4.00000
2    1048     47 -1266  2.90000
</details>
# 答案1
**得分**: 1
你可以使用 [`swaplevel`](https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.swaplevel.html) 和切片:
```python
grouped = (df.groupby(['points', 'team'])[['tiger', 'lion', 'bear']].median()
            .swaplevel()
          )
grouped.loc['A'] - grouped.loc['B']
或者使用 xs:
grouped = df.groupby(['points', 'team'])[['tiger', 'lion', 'bear']].median()
grouped.xs('A', level='team') - grouped.xs('B', level='team')
输出结果:
        tiger    lion  bear
points                     
425     -72.0 -1878.0  -1.4
441     211.0  5238.0   4.0
1048    -47.0  1266.0  -2.9
英文:
You can swaplevel and slice:
grouped = (df.groupby(['points', 'team'])[['tiger', 'lion', 'bear']].median()
            .swaplevel()
          )
grouped.loc['A']-grouped.loc['B']
Or use xs:
grouped = df.groupby(['points', 'team'])[['tiger', 'lion', 'bear']].median()
grouped.xs('A', level='team')-grouped.xs('B', level='team')
Output:
        tiger    lion  bear
points                     
425     -72.0 -1878.0  -1.4
441     211.0  5238.0   4.0
1048    -47.0  1266.0  -2.9
答案2
得分: 0
grouped.groupby(level=0).apply(lambda dd:dd.diff().tail(1)).droplevel([1,2])
out
       老虎    狮子   熊
points                  
425     72.0  1878.0  1.4
441    -211.0 -5238.0 -4.0
1048    47.0 -1266.0  2.9
英文:
grouped.groupby(level=0).apply(lambda dd:dd.diff().tail(1)).droplevel([1,2])
out
        tiger    lion  bear
points                     
425      72.0  1878.0   1.4
441    -211.0 -5238.0  -4.0
1048     47.0 -1266.0   2.9
通过集体智慧和协作来改善编程学习和解决问题的方式。致力于成为全球开发者共同参与的知识库,让每个人都能够通过互相帮助和分享经验来进步。


评论