合并两个没有共同列的数据表

huangapple go评论72阅读模式
英文:

Merging two data.tables that don't have common columns

问题

我想合并两个没有共同列的data.table,最终结果将有N1*N2行,其中N1N2分别是每个数据框中的行数。

使用基本的R可以完成这个操作:

A <- data.frame(id = 1:6, value = 19:24)
B <- data.frame(value2 = c(25, 25, 26, 26), value3 = 4:5)

A
#>   id value
#> 1  1    19
#> 2  2    20
#> 3  3    21
#> 4  4    22
#> 5  5    23
#> 6  6    24

B
#>   value2 value3
#> 1     25      4
#> 2     25      5
#> 3     26      4
#> 4     26      5

merge(A, B, all = TRUE)
#>    id value value2 value3
#> 1   1    19     25      4
#> 2   2    20     25      4
#> 3   3    21     25      4
#> 4   4    22     25      4
#> 5   5    23     25      4
#> 6   6    24     25      4
#> 7   1    19     25      5
#> 8   2    20     25      5
#> 9   3    21     25      5
#> 10  4    22     25      5
#> 11  5    23     25      5
#> 12  6    24     25      5
#> 13  1    19     26      4
#> 14  2    20     26      4
#> 15  3    21     26      4
#> 16  4    22     26      4
#> 17  5    23     26      4
#> 18  6    24     26      4
#> 19  1    19     26      5
#> 20  2    20     26      5
#> 21  3    21     26      5
#> 22  4    22     26      5
#> 23  5    23     26      5
#> 24  6    24     26      5

但是,如果现在有两个data.table而不是dataframes,会出现错误:

library(data.table)

A <- data.table(id = 1:6, value = 19:24)
B <- data.table(value2 = c(25, 25, 26, 26), value3 = 4:5)

merge(A, B, all = TRUE)
#> Error in merge.data.table(A, B, all = TRUE): A non-empty vector of column names for `by` is required.

如何使用data.table来重现基本R的行为(不一定要使用merge())?

英文:

I want to merge two data.tables that don't have a common column, so I would end up with N1*N2 rows, where N1 and N2 are the number of rows in each dataframe.

Doing this with base R works:

A &lt;- data.frame(id = 1:6, value = 19:24)
B &lt;- data.frame(value2 = c(25, 25, 26, 26), value3 = 4:5)

A
#&gt;   id value
#&gt; 1  1    19
#&gt; 2  2    20
#&gt; 3  3    21
#&gt; 4  4    22
#&gt; 5  5    23
#&gt; 6  6    24

B
#&gt;   value2 value3
#&gt; 1     25      4
#&gt; 2     25      5
#&gt; 3     26      4
#&gt; 4     26      5

merge(A, B, all = TRUE)
#&gt;    id value value2 value3
#&gt; 1   1    19     25      4
#&gt; 2   2    20     25      4
#&gt; 3   3    21     25      4
#&gt; 4   4    22     25      4
#&gt; 5   5    23     25      4
#&gt; 6   6    24     25      4
#&gt; 7   1    19     25      5
#&gt; 8   2    20     25      5
#&gt; 9   3    21     25      5
#&gt; 10  4    22     25      5
#&gt; 11  5    23     25      5
#&gt; 12  6    24     25      5
#&gt; 13  1    19     26      4
#&gt; 14  2    20     26      4
#&gt; 15  3    21     26      4
#&gt; 16  4    22     26      4
#&gt; 17  5    23     26      4
#&gt; 18  6    24     26      4
#&gt; 19  1    19     26      5
#&gt; 20  2    20     26      5
#&gt; 21  3    21     26      5
#&gt; 22  4    22     26      5
#&gt; 23  5    23     26      5
#&gt; 24  6    24     26      5

But if I now have two data.tables and not dataframes anymore, it errors:

library(data.table)

A &lt;- data.table(id = 1:6, value = 19:24)
B &lt;- data.table(value2 = c(25, 25, 26, 26), value3 = 4:5)

merge(A, B, all = TRUE)
#&gt; Error in merge.data.table(A, B, all = TRUE): A non-empty vector of column names for `by` is required.

How can I reproduce the base R behavior with data.table (without necessarily using merge())?

答案1

得分: 5

data.table中,你正在寻找一个交叉连接。有一个CJ函数,但它只能用于一个数据集,否则你可以这样做:

res <- setkey(A[, c(k=1, .SD)], k)[B[, c(k=1, .SD)], allow.cartesian = TRUE][, k := NULL]
res
    id value value2 value3
 1:  1    19     25      4
 2:  2    20     25      4
 3:  3    21     25      4
 4:  4    22     25      4
 5:  5    23     25      4
 6:  6    24     25      4
 7:  1    19     25      5
 8:  2    20     25      5
 9:  3    21     25      5
10:  4    22     25      5
11:  5    23     25      5
12:  6    24     25      5
13:  1    19     26      4
14:  2    20     26      4
15:  3    21     26      4
16:  4    22     26      4
17:  5    23     26      4
18:  6    24     26      4
19:  1    19     26      5
20:  2    20     26      5
21:  3    21     26      5
22:  4    22     26      5
23:  5    23     26      5
24:  6    24     26      5
    id value value2 value3

注意备用的dplyr解决方案:

dplyr::cross_join(A, B)
英文:

You are looking for a cross-join. In data.table, there is a CJ function but it only works with one data set, otherwise you can do:

res &lt;- setkey(A[, c(k=1, .SD)], k)[B[, c(k=1, .SD)], allow.cartesian = TRUE][, k := NULL]
res
    id value value2 value3
 1:  1    19     25      4
 2:  2    20     25      4
 3:  3    21     25      4
 4:  4    22     25      4
 5:  5    23     25      4
 6:  6    24     25      4
 7:  1    19     25      5
 8:  2    20     25      5
 9:  3    21     25      5
10:  4    22     25      5
11:  5    23     25      5
12:  6    24     25      5
13:  1    19     26      4
14:  2    20     26      4
15:  3    21     26      4
16:  4    22     26      4
17:  5    23     26      4
18:  6    24     26      4
19:  1    19     26      5
20:  2    20     26      5
21:  3    21     26      5
22:  4    22     26      5
23:  5    23     26      5
24:  6    24     26      5
    id value value2 value3

Note the alternative dplyr solution:

dplyr::cross_join(A, B)

答案2

得分: 1

来自data.table的替代方案:

library(data.table)

A <- data.table(id = 1:6, value = 19:24)
B <- data.table(value2 = c(25, 25, 26, 26), value3 = 4:5)

CJDT <- function(...) {
  Reduce(function(DT1, DT2) cbind(DT1, DT2[rep(1:.N, each=nrow(DT1))]), list(...))
}

CJDT(A, B)
#>     id value value2 value3
#>  1:  1    19     25      4
#>  2:  2    20     25      4
#>  3:  3    21     25      4
#>  4:  4    22     25      4
#>  5:  5    23     25      4
#>  6:  6    24     25      4
#>  7:  1    19     25      5
#>  8:  2    20     25      5
#>  9:  3    21     25      5
#> 10:  4    22     25      5
#> 11:  5    23     25      5
#> 12:  6    24     25      5
#> 13:  1    19     26      4
#> 14:  2    20     26      4
#> 15:  3    21     26      4
#> 16:  4    22     26      4
#> 17:  5    23     26      4
#> 18:  6    24     26      4
#> 19:  1    19     26      5
#> 20:  2    20     26      5
#> 21:  3    21     26      5
#> 22:  4    22     26      5
#> 23:  5    23     26      5
#> 24:  6    24     26      5
#>     id value value2 value3

创建于2023-02-06,使用reprex v2.0.2

英文:

An alternative coming from this GitHub issue on the data.table repo:

library(data.table)

A &lt;- data.table(id = 1:6, value = 19:24)
B &lt;- data.table(value2 = c(25, 25, 26, 26), value3 = 4:5)

CJDT &lt;- function(...) {
  Reduce(function(DT1, DT2) cbind(DT1, DT2[rep(1:.N, each=nrow(DT1))]), list(...))
}

CJDT(A, B)
#&gt;     id value value2 value3
#&gt;  1:  1    19     25      4
#&gt;  2:  2    20     25      4
#&gt;  3:  3    21     25      4
#&gt;  4:  4    22     25      4
#&gt;  5:  5    23     25      4
#&gt;  6:  6    24     25      4
#&gt;  7:  1    19     25      5
#&gt;  8:  2    20     25      5
#&gt;  9:  3    21     25      5
#&gt; 10:  4    22     25      5
#&gt; 11:  5    23     25      5
#&gt; 12:  6    24     25      5
#&gt; 13:  1    19     26      4
#&gt; 14:  2    20     26      4
#&gt; 15:  3    21     26      4
#&gt; 16:  4    22     26      4
#&gt; 17:  5    23     26      4
#&gt; 18:  6    24     26      4
#&gt; 19:  1    19     26      5
#&gt; 20:  2    20     26      5
#&gt; 21:  3    21     26      5
#&gt; 22:  4    22     26      5
#&gt; 23:  5    23     26      5
#&gt; 24:  6    24     26      5
#&gt;     id value value2 value3

<sup>Created on 2023-02-06 with reprex v2.0.2</sup>

答案3

得分: 0

A[, as.list(B), names(A)]

结果

    id value value2 value3
 1:  1    19     25      4
 2:  1    19     25      5
 3:  1    19     26      4
 4:  1    19     26      5
 5:  2    20     25      4
 6:  2    20     25      5
 7:  2    20     26      4
 8:  2    20     26      5
 9:  3    21     25      4
10:  3    21     25      5
11:  3    21     26      4
12:  3    21     26      5
13:  4    22     25      4
14:  4    22     25      5
15:  4    22     26      4
16:  4    22     26      5
17:  5    23     25      4
18:  5    23     25      5
19:  5    23     26      4
20:  5    23     26      5
21:  6    24     25      4
22:  6    24     25      5
23:  6    24     26      4
24:  6    24     26      5

数据

A <- data.table(id = 1:6, value = 19:24)
B <- data.table(value2 = c(25, 25, 26, 26), value3 = 4:5)

<details>
<summary>英文:</summary>

    A[, as.list(B), names(A)]

**results**

        id value value2 value3
     1:  1    19     25      4
     2:  1    19     25      5
     3:  1    19     26      4
     4:  1    19     26      5
     5:  2    20     25      4
     6:  2    20     25      5
     7:  2    20     26      4
     8:  2    20     26      5
     9:  3    21     25      4
    10:  3    21     25      5
    11:  3    21     26      4
    12:  3    21     26      5
    13:  4    22     25      4
    14:  4    22     25      5
    15:  4    22     26      4
    16:  4    22     26      5
    17:  5    23     25      4
    18:  5    23     25      5
    19:  5    23     26      4
    20:  5    23     26      5
    21:  6    24     25      4
    22:  6    24     25      5
    23:  6    24     26      4
    24:  6    24     26      5

**data**

    A &lt;- data.table(id = 1:6, value = 19:24)
    B &lt;- data.table(value2 = c(25, 25, 26, 26), value3 = 4:5)

</details>



huangapple
  • 本文由 发表于 2023年2月6日 21:05:58
  • 转载请务必保留本文链接:https://go.coder-hub.com/75361701.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定