英文:
How to interpolate missing years within pd.groupby()
问题
问题:
我有一个包含5年时间间隔的数据帧。我需要按' id '列对条目进行分组,并在组中的第一个和最后一个项目之间进行插值。我理解这必须是groupby(),set_index()和interpolate()的某种组合,但我无法使其对整个输入数据帧起作用。
示例df:
import pandas as pd
data = {
'id': ['a', 'b', 'a', 'b'],
'year': [2005, 2005, 2010, 2010],
'val': [0, 0, 100, 100],
}
df = pd.DataFrame.from_dict(data)
示例输入df:
_ id year val
0 a 2005 0
1 a 2010 100
2 b 2005 0
3 b 2010 100
期望的输出df:
_ id year val type
0 a 2005 0 原始的
1 a 2006 20 插值的
2 a 2007 40 插值的
3 a 2008 60 插值的
4 a 2009 80 插值的
5 a 2010 100 原始的
6 b 2005 0 原始的
7 b 2006 20 插值的
8 b 2007 40 插值的
9 b 2008 60 插值的
10 b 2009 80 插值的
11 b 2010 100 原始的
'type'不是必需的,仅用于说明目的。
问题:
如何向groupby()视图添加缺失的年份并interpolate()它们对应的值?
谢谢!
英文:
Problem:
I have a dataframe that contains entries with 5 year time intervals. I need to group entries by 'id' columns and interpolate values between the first and last item in the group. I understand that it has to be some combination of groupby(), set_index() and interpolate() but I am unable to make it work for the whole input dataframe.
Sample df:
import pandas as pd
data = {
'id': ['a', 'b', 'a', 'b'],
'year': [2005, 2005, 2010, 2010],
'val': [0, 0, 100, 100],
}
df = pd.DataFrame.from_dict(data)
example input df:
_ id year val
0 a 2005 0
1 a 2010 100
2 b 2005 0
3 b 2010 100
expected output df:
_ id year val type
0 a 2005 0 original
1 a 2006 20 interpolated
2 a 2007 40 interpolated
3 a 2008 60 interpolated
4 a 2009 80 interpolated
5 a 2010 100 original
6 b 2005 0 original
7 b 2006 20 interpolated
8 b 2007 40 interpolated
9 b 2008 60 interpolated
10 b 2009 80 interpolated
11 b 2010 100 original
'type' is not necessary its just for illustration purposes.
Question:
How can I add missing years to the groupby() view and interpolate() their corresponding values?
Thank you!
答案1
得分: 1
针对每个组分别创建年份的最小和最大年份的解决方案:
首先,通过 DataFrame.reindex
根据每个组的最小和最大值创建缺失值,然后通过 Series.interpolate
进行插值,最后将原始DataFrame的值标识到新列中:
df = (df.set_index('year')
.groupby('id')['val']
.apply(lambda x: x.reindex(range(x.index.min(), x.index.max() + 1)).interpolate())
.reset_index()
.merge(df, how='left', indicator=True)
.assign(type=lambda x: np.where(x.pop('_merge').eq('both'),
'original',
'interpolated')))
print (df)
id year val type
0 a 2005 0.0 original
1 a 2006 20.0 interpolated
2 a 2007 40.0 interpolated
3 a 2008 60.0 interpolated
4 a 2009 80.0 interpolated
5 a 2010 100.0 original
6 b 2005 0.0 original
7 b 2006 20.0 interpolated
8 b 2007 40.0 interpolated
9 b 2008 60.0 interpolated
10 b 2009 80.0 interpolated
11 b 2010 100.0 original
请注意,这是给定代码的翻译部分,没有包括其他信息或回答您可能有的其他问题。
英文:
Solution for create years by minimal and maximal years for each group independently:
First create missing values by DataFrame.reindex
per groups by minimal and maximal values and then interpolate by Series.interpolate
, last identify values from original DataFrame to new column:
df = (df.set_index('year')
.groupby('id')['val']
.apply(lambda x: x.reindex(range(x.index.min(), x.index.max() + 1)).interpolate())
.reset_index()
.merge(df, how='left', indicator=True)
.assign(type = lambda x: np.where(x.pop('_merge').eq('both'),
'original',
'interpolated')))
print (df)
id year val type
0 a 2005 0.0 original
1 a 2006 20.0 interpolated
2 a 2007 40.0 interpolated
3 a 2008 60.0 interpolated
4 a 2009 80.0 interpolated
5 a 2010 100.0 original
6 b 2005 0.0 original
7 b 2006 20.0 interpolated
8 b 2007 40.0 interpolated
9 b 2008 60.0 interpolated
10 b 2009 80.0 interpolated
11 b 2010 100.0 original
答案2
得分: 1
使用pivot
、unstack
、reindex
和interpolate
来进行临时重塑以添加缺失的年份:
out = (df
.pivot(index='year', columns='id', values='val')
.reindex(range(df['year'].min(), df['year'].max()+1))
.interpolate('index')
.unstack(-1).reset_index(name='val')
)
输出:
id year val
0 a 2005 0.0
1 a 2006 20.0
2 a 2007 40.0
3 a 2008 60.0
4 a 2009 80.0
5 a 2010 100.0
6 b 2005 0.0
7 b 2006 20.0
8 b 2007 40.0
9 b 2008 60.0
10 b 2009 80.0
11 b 2010 100.0
英文:
Using a temporary reshaping with pivot
and unstack
and reindex
+interpolate
to add the missing years:
out = (df
.pivot(index='year', columns='id', values='val')
.reindex(range(df['year'].min(), df['year'].max()+1))
.interpolate('index')
.unstack(-1).reset_index(name='val')
)
Output:
id year val
0 a 2005 0.0
1 a 2006 20.0
2 a 2007 40.0
3 a 2008 60.0
4 a 2009 80.0
5 a 2010 100.0
6 b 2005 0.0
7 b 2006 20.0
8 b 2007 40.0
9 b 2008 60.0
10 b 2009 80.0
11 b 2010 100.0
通过集体智慧和协作来改善编程学习和解决问题的方式。致力于成为全球开发者共同参与的知识库,让每个人都能够通过互相帮助和分享经验来进步。
评论