英文:
ConquestR: is there a way to produce Wright Maps in ConquestR?
问题
ConquestR中是否存在生成Wright Maps的功能,从sysfile中生成?
我知道特定参数存储在Conquest sysfile中,可以从中读取(例如,mySys <- ConquestSys()),我认为可以通过mySys$gXsi和mySys$gMasterTheta访问项目和个体参数,但我不确定ConquestR中是否内置了绘图功能。
有人可以帮忙吗?
英文:
Is there existing functionality to produce Wright Maps in ConquestR from a sysfile?
I know specific parameters are stored and can be read from a Conquest sysfile (e.g., mySys <-ConquestSys()), and I think item and person parameters can be accessed via mySys$gXsi and mySys$gMasterTheta, but I'm unsure if there is plotting functionality built into ConquestR.
Could someone help?
答案1
得分: 0
你可以从系统文件中生成WrightMap:
library(conquestr)
mySys <- ConQuestSys()
myWrightMap <- plotItemMap(mySys)
你可以从系统文件中获取项目参数:
library(conquestr)
mySys <- ConQuestSys()
myItemP <- getCqRespModel(mySys)
str(myItemP)
输出:
'data.frame': 12 obs. of 24 variables:
$ ParamNumber : int 0 1 2 3 4 5 6 7 8 9 ...
$ ParamType : int 0 0 0 0 0 0 0 0 0 0 ...
$ label : chr "item" "item" "item" "item" ...
$ variable_type : chr "0" "0" "0" "0" ...
$ variable_number : chr "0" "0" "0" "0" ...
$ gin_no : chr "0" "1" "2" "3" ...
$ step_involved : chr "-1" "-1" "-1" "-1" ...
$ sign : chr "+" "+" "+" "+" ...
$ constrained : logi FALSE FALSE FALSE FALSE FALSE FALSE ...
$ anchor : logi FALSE FALSE FALSE FALSE FALSE FALSE ...
$ xsi : num -0.704 -1.251 -1.092 -0.231 0.111 ...
$ se : num 0.0716 0.0778 0.0756 0.0692 0.069 ...
$ fitName : chr "Fit 1" "Fit 2" "Fit 3" "Fit 4" ...
$ UnWeightedMNSQ : num 0.865 0.995 0.883 0.957 1.098 ...
$ UnWeightedtfit : num -3.149 -0.0888 -2.7047 -0.9625 2.144 ...
$ WeightedCW2 : num 31.1 39.9 37.4 25.9 25.5 ...
$ WeightedMNSQ : num 0.907 0.975 0.929 0.964 1.068 ...
$ Weightedtfit : num -3.37 -0.65 -2.08 -1.47 2.78 ...
$ WeightedNumerator : num 178 162 163 202 225 ...
$ WeightedDenominator: num 196 166 176 210 211 ...
$ UnWeightedSE : num 0.0447 0.0447 0.0447 0.0447 0.0447 ...
$ WeightedSE : num 0.0285 0.0381 0.0348 0.0243 0.024 ...
$ Failed : num 0 0 0 0 0 0 0 0 0 0 ...
$ GinLongLabel : chr "item:1 (item one)" "item:2 (item two)" "item:3 (item three)" "item:4 (item four)" ...
你可以获取已从系统文件估计的个体能力估计值:
library(conquestr)
mySys <- ConQuestSys()
# 也可以使用 conquestr::getCqDataDf
myData <- getCqData(mySys)
str(myData$Estimates)
输出:
'data.frame': 1000 obs. of 18 variables:
$ pid : num 1 2 3 4 5 6 7 8 9 10 ...
$ eap : num -1.019 0.441 -1.019 0.11 0.11 ...
$ eaperr : num 0.263 0.347 0.263 0.315 0.315 ...
$ wle : num NA NA NA NA NA NA NA NA NA NA ...
$ wleerr : num NA NA NA NA NA NA NA NA NA NA ...
$ PV1_D1 : num -0.4823 0.198 -0.9408 -0.0318 0.7568 ...
$ PV2_D1 : num -0.7831 -0.6667 -1.0882 0.1285 0.0495 ...
$ PV3_D1 : num -1.184 1.177 -1.14 0.517 0.755 ...
$ PV4_D1 : num -1.0462 -0.0626 -1.3268 0.6856 -0.1049 ...
$ PV5_D1 : num -0.395 1.318 -0.869 0.776 0.277 ...
$ jml : num NA NA NA NA NA NA NA NA NA NA ...
$ jmlerr : num NA NA NA NA NA NA NA NA NA NA ...
$ scores : num 5 10 5 9 9 7 6 9 7 8 ...
$ maxscores : num 12 12 12 12 12 12 12 12 12 12 ...
$ fit : num NA NA NA NA NA NA NA NA NA NA ...
$ weight : num 1 1 1 1 1 1 1 1 1 1 ...
希望对你有所帮助。
英文:
you can produce a WrightMap from a system file:
library(conquestr)
mySys <- ConQuestSys()
myWrightMap <- plotItemMap(mySys)
You can get the item parameters from a system file:
library(conquestr)
mySys <- ConQuestSys()
myItemP <- getCqRespModel(mySys)
str(myItemP)
output:
'data.frame': 12 obs. of 24 variables:
$ ParamNumber : int 0 1 2 3 4 5 6 7 8 9 ...
$ ParamType : int 0 0 0 0 0 0 0 0 0 0 ...
$ label : chr "item" "item" "item" "item" ...
$ variable_type : chr "0" "0" "0" "0" ...
$ variable_number : chr "0" "0" "0" "0" ...
$ gin_no : chr "0" "1" "2" "3" ...
$ step_involved : chr "-1" "-1" "-1" "-1" ...
$ sign : chr "+" "+" "+" "+" ...
$ constrained : logi FALSE FALSE FALSE FALSE FALSE FALSE ...
$ anchor : logi FALSE FALSE FALSE FALSE FALSE FALSE ...
$ xsi : num -0.704 -1.251 -1.092 -0.231 0.111 ...
$ se : num 0.0716 0.0778 0.0756 0.0692 0.069 ...
$ fitName : chr "Fit 1" "Fit 2" "Fit 3" "Fit 4" ...
$ UnWeightedMNSQ : num 0.865 0.995 0.883 0.957 1.098 ...
$ UnWeightedtfit : num -3.149 -0.0888 -2.7047 -0.9625 2.144 ...
$ WeightedCW2 : num 31.1 39.9 37.4 25.9 25.5 ...
$ WeightedMNSQ : num 0.907 0.975 0.929 0.964 1.068 ...
$ Weightedtfit : num -3.37 -0.65 -2.08 -1.47 2.78 ...
$ WeightedNumerator : num 178 162 163 202 225 ...
$ WeightedDenominator: num 196 166 176 210 211 ...
$ UnWeightedSE : num 0.0447 0.0447 0.0447 0.0447 0.0447 ...
$ WeightedSE : num 0.0285 0.0381 0.0348 0.0243 0.024 ...
$ Failed : num 0 0 0 0 0 0 0 0 0 0 ...
$ GinLongLabel : chr "item:1 (item one)" "item:2 (item two)" "item:3 (item three)" "item:4 (item four)" ...
You can get the person ability estimates, if you have estimated them from a system file:
library(conquestr)
mySys <- ConQuestSys()
# see also conquestr::getCqDataDf
myData <- getCqData(mySys)
str(myData$Estimates)
output:
'data.frame': 1000 obs. of 18 variables:
$ pid : num 1 2 3 4 5 6 7 8 9 10 ...
$ eap : num -1.019 0.441 -1.019 0.11 0.11 ...
$ eaperr : num 0.263 0.347 0.263 0.315 0.315 ...
$ wle : num NA NA NA NA NA NA NA NA NA NA ...
$ wleerr : num NA NA NA NA NA NA NA NA NA NA ...
$ PV1_D1 : num -0.4823 0.198 -0.9408 -0.0318 0.7568 ...
$ PV2_D1 : num -0.7831 -0.6667 -1.0882 0.1285 0.0495 ...
$ PV3_D1 : num -1.184 1.177 -1.14 0.517 0.755 ...
$ PV4_D1 : num -1.0462 -0.0626 -1.3268 0.6856 -0.1049 ...
$ PV5_D1 : num -0.395 1.318 -0.869 0.776 0.277 ...
$ jml : num NA NA NA NA NA NA NA NA NA NA ...
$ jmlerr : num NA NA NA NA NA NA NA NA NA NA ...
$ scores : num 5 10 5 9 9 7 6 9 7 8 ...
$ maxscores : num 12 12 12 12 12 12 12 12 12 12 ...
$ fit : num NA NA NA NA NA NA NA NA NA NA ...
$ weight : num 1 1 1 1 1 1 1 1 1 1 ...
通过集体智慧和协作来改善编程学习和解决问题的方式。致力于成为全球开发者共同参与的知识库,让每个人都能够通过互相帮助和分享经验来进步。
评论