ConquestR: 是否有一种方法可以在ConquestR中生成Wright地图?

huangapple go评论57阅读模式
英文:

ConquestR: is there a way to produce Wright Maps in ConquestR?

问题

ConquestR中是否存在生成Wright Maps的功能,从sysfile中生成?

我知道特定参数存储在Conquest sysfile中,可以从中读取(例如,mySys <- ConquestSys()),我认为可以通过mySys$gXsi和mySys$gMasterTheta访问项目和个体参数,但我不确定ConquestR中是否内置了绘图功能。

有人可以帮忙吗?

英文:

Is there existing functionality to produce Wright Maps in ConquestR from a sysfile?

I know specific parameters are stored and can be read from a Conquest sysfile (e.g., mySys <-ConquestSys()), and I think item and person parameters can be accessed via mySys$gXsi and mySys$gMasterTheta, but I'm unsure if there is plotting functionality built into ConquestR.

Could someone help?

答案1

得分: 0

你可以从系统文件中生成WrightMap:

library(conquestr)
mySys <- ConQuestSys()
myWrightMap <- plotItemMap(mySys)

你可以从系统文件中获取项目参数:

library(conquestr)
mySys <- ConQuestSys()
myItemP <- getCqRespModel(mySys)
str(myItemP)

输出:

'data.frame': 12 obs. of  24 variables:
 $ ParamNumber        : int  0 1 2 3 4 5 6 7 8 9 ...
 $ ParamType          : int  0 0 0 0 0 0 0 0 0 0 ...
 $ label              : chr  "item" "item" "item" "item" ...
 $ variable_type      : chr  "0" "0" "0" "0" ...
 $ variable_number    : chr  "0" "0" "0" "0" ...
 $ gin_no             : chr  "0" "1" "2" "3" ...
 $ step_involved      : chr  "-1" "-1" "-1" "-1" ...
 $ sign               : chr  "+" "+" "+" "+" ...
 $ constrained        : logi  FALSE FALSE FALSE FALSE FALSE FALSE ...
 $ anchor             : logi  FALSE FALSE FALSE FALSE FALSE FALSE ...
 $ xsi                : num  -0.704 -1.251 -1.092 -0.231 0.111 ...
 $ se                 : num  0.0716 0.0778 0.0756 0.0692 0.069 ...
 $ fitName            : chr  "Fit 1" "Fit 2" "Fit 3" "Fit 4" ...
 $ UnWeightedMNSQ     : num  0.865 0.995 0.883 0.957 1.098 ...
 $ UnWeightedtfit     : num  -3.149 -0.0888 -2.7047 -0.9625 2.144 ...
 $ WeightedCW2        : num  31.1 39.9 37.4 25.9 25.5 ...
 $ WeightedMNSQ       : num  0.907 0.975 0.929 0.964 1.068 ...
 $ Weightedtfit       : num  -3.37 -0.65 -2.08 -1.47 2.78 ...
 $ WeightedNumerator  : num  178 162 163 202 225 ...
 $ WeightedDenominator: num  196 166 176 210 211 ...
 $ UnWeightedSE       : num  0.0447 0.0447 0.0447 0.0447 0.0447 ...
 $ WeightedSE         : num  0.0285 0.0381 0.0348 0.0243 0.024 ...
 $ Failed             : num  0 0 0 0 0 0 0 0 0 0 ...
 $ GinLongLabel       : chr  "item:1 (item one)" "item:2 (item two)" "item:3 (item three)" "item:4 (item four)" ...

你可以获取已从系统文件估计的个体能力估计值:

library(conquestr)
mySys <- ConQuestSys()
# 也可以使用 conquestr::getCqDataDf
myData <- getCqData(mySys)
str(myData$Estimates)

输出:

'data.frame': 1000 obs. of  18 variables:
 $ pid        : num  1 2 3 4 5 6 7 8 9 10 ...
 $ eap        : num  -1.019 0.441 -1.019 0.11 0.11 ...
 $ eaperr     : num  0.263 0.347 0.263 0.315 0.315 ...
 $ wle        : num  NA NA NA NA NA NA NA NA NA NA ...
 $ wleerr     : num  NA NA NA NA NA NA NA NA NA NA ...
 $ PV1_D1     : num  -0.4823 0.198 -0.9408 -0.0318 0.7568 ...
 $ PV2_D1     : num  -0.7831 -0.6667 -1.0882 0.1285 0.0495 ...
 $ PV3_D1     : num  -1.184 1.177 -1.14 0.517 0.755 ...
 $ PV4_D1     : num  -1.0462 -0.0626 -1.3268 0.6856 -0.1049 ...
 $ PV5_D1     : num  -0.395 1.318 -0.869 0.776 0.277 ...
 $ jml        : num  NA NA NA NA NA NA NA NA NA NA ...
 $ jmlerr     : num  NA NA NA NA NA NA NA NA NA NA ...
 $ scores     : num  5 10 5 9 9 7 6 9 7 8 ...
 $ maxscores  : num  12 12 12 12 12 12 12 12 12 12 ...
 $ fit        : num  NA NA NA NA NA NA NA NA NA NA ...
 $ weight     : num  1 1 1 1 1 1 1 1 1 1 ...

希望对你有所帮助。

英文:

you can produce a WrightMap from a system file:

library(conquestr)
mySys &lt;- ConQuestSys()
myWrightMap &lt;- plotItemMap(mySys)

ConquestR: 是否有一种方法可以在ConquestR中生成Wright地图?

You can get the item parameters from a system file:

library(conquestr)
mySys &lt;- ConQuestSys()
myItemP &lt;- getCqRespModel(mySys)
str(myItemP)

output:

&#39;data.frame&#39;:	12 obs. of  24 variables:
$ ParamNumber        : int  0 1 2 3 4 5 6 7 8 9 ...
$ ParamType          : int  0 0 0 0 0 0 0 0 0 0 ...
$ label              : chr  &quot;item&quot; &quot;item&quot; &quot;item&quot; &quot;item&quot; ...
$ variable_type      : chr  &quot;0&quot; &quot;0&quot; &quot;0&quot; &quot;0&quot; ...
$ variable_number    : chr  &quot;0&quot; &quot;0&quot; &quot;0&quot; &quot;0&quot; ...
$ gin_no             : chr  &quot;0&quot; &quot;1&quot; &quot;2&quot; &quot;3&quot; ...
$ step_involved      : chr  &quot;-1&quot; &quot;-1&quot; &quot;-1&quot; &quot;-1&quot; ...
$ sign               : chr  &quot;+&quot; &quot;+&quot; &quot;+&quot; &quot;+&quot; ...
$ constrained        : logi  FALSE FALSE FALSE FALSE FALSE FALSE ...
$ anchor             : logi  FALSE FALSE FALSE FALSE FALSE FALSE ...
$ xsi                : num  -0.704 -1.251 -1.092 -0.231 0.111 ...
$ se                 : num  0.0716 0.0778 0.0756 0.0692 0.069 ...
$ fitName            : chr  &quot;Fit 1&quot; &quot;Fit 2&quot; &quot;Fit 3&quot; &quot;Fit 4&quot; ...
$ UnWeightedMNSQ     : num  0.865 0.995 0.883 0.957 1.098 ...
$ UnWeightedtfit     : num  -3.149 -0.0888 -2.7047 -0.9625 2.144 ...
$ WeightedCW2        : num  31.1 39.9 37.4 25.9 25.5 ...
$ WeightedMNSQ       : num  0.907 0.975 0.929 0.964 1.068 ...
$ Weightedtfit       : num  -3.37 -0.65 -2.08 -1.47 2.78 ...
$ WeightedNumerator  : num  178 162 163 202 225 ...
$ WeightedDenominator: num  196 166 176 210 211 ...
$ UnWeightedSE       : num  0.0447 0.0447 0.0447 0.0447 0.0447 ...
$ WeightedSE         : num  0.0285 0.0381 0.0348 0.0243 0.024 ...
$ Failed             : num  0 0 0 0 0 0 0 0 0 0 ...
$ GinLongLabel       : chr  &quot;item:1 (item one)&quot; &quot;item:2 (item two)&quot; &quot;item:3 (item three)&quot; &quot;item:4 (item four)&quot; ...

You can get the person ability estimates, if you have estimated them from a system file:

library(conquestr)
mySys &lt;- ConQuestSys()
# see also conquestr::getCqDataDf
myData &lt;- getCqData(mySys)
str(myData$Estimates)

output:

&#39;data.frame&#39;:	1000 obs. of  18 variables:
$ pid        : num  1 2 3 4 5 6 7 8 9 10 ...
$ eap        : num  -1.019 0.441 -1.019 0.11 0.11 ...
$ eaperr     : num  0.263 0.347 0.263 0.315 0.315 ...
$ wle        : num  NA NA NA NA NA NA NA NA NA NA ...
$ wleerr     : num  NA NA NA NA NA NA NA NA NA NA ...
$ PV1_D1     : num  -0.4823 0.198 -0.9408 -0.0318 0.7568 ...
$ PV2_D1     : num  -0.7831 -0.6667 -1.0882 0.1285 0.0495 ...
$ PV3_D1     : num  -1.184 1.177 -1.14 0.517 0.755 ...
$ PV4_D1     : num  -1.0462 -0.0626 -1.3268 0.6856 -0.1049 ...
$ PV5_D1     : num  -0.395 1.318 -0.869 0.776 0.277 ...
$ jml        : num  NA NA NA NA NA NA NA NA NA NA ...
$ jmlerr     : num  NA NA NA NA NA NA NA NA NA NA ...
$ scores     : num  5 10 5 9 9 7 6 9 7 8 ...
$ maxscores  : num  12 12 12 12 12 12 12 12 12 12 ...
$ fit        : num  NA NA NA NA NA NA NA NA NA NA ...
$ weight     : num  1 1 1 1 1 1 1 1 1 1 ...

huangapple
  • 本文由 发表于 2023年2月6日 11:55:02
  • 转载请务必保留本文链接:https://go.coder-hub.com/75357207.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定