如何调整MNIST图像大小而不会耗尽内存?

huangapple go评论53阅读模式
英文:

How to resize MNIST images without running out of RAM?

问题

我正在尝试预处理我的数据,将训练集图像调整大小为 224 * 224,具有 3 个通道,以将其用作 VGG 16 模型的输入,但我内存不足。如何解决这个问题?

new_size = (224, 224)
new_x_train = []
for image in x_train:
  image = x_train[image]
  image = tf.constant(image)
  image = tf.expand_dims(image, axis=-1)
  image = tf.concat([image, image, image], axis=-1)
  image = tf.image.resize(image, new_size)
  new_x_train.append(image)

new_x_train = tf.stack(new_x_train)

这对单个图像有效。但是,当我尝试使用循环对所有 60000 个图像执行相同操作时,我会耗尽内存。

英文:

I'm trying to preprocess my data to resize the training set images to 224 * 224 with 3 channels to use it as input to VGG 16 model and I'm running out of RAM. How do I resolve this?

new_size = (224,224)
new_x_train = []
for image in x_train:
  image = x_train[image]
  image = tf.constant(image)
  image = tf.expand_dims(image, axis = -1)
  image = tf.concat([image, image, image], axis = -1)
  image = tf.image.resize(image,new_size)
  new_x_train.append(image)

new_x_train = tf.stack(new_x_train)

This works for a single image. However, when i try to do the same thing for all the 60000 images using a loop, I run out of RAM

答案1

得分: 1

您当前的方法会将所有图像加载到内存中,这是低效的。尝试使用Python生成器或使用TensorFlow数据集来动态处理数据。

对于您的当前情况,如果x_train是一个NumPy数组,可以使用TensorFlow数据集的示例:

new_size = (224, 224)

def resize_image(image):
    image = tf.expand_dims(image, axis=-1)
    image = tf.repeat(image, 3, axis=-1)
    image = tf.image.resize(image, new_size)

x_train_ds = tf.data.Dataset.from_tensor_slices(x_train)
x_train_ds = x_train_ds.map(resize_image)

使用tf.data,resize_image函数将在每次迭代时被调用,而不是直接加载到内存中。但如果您希望将其直接存储在内存中,您仍然可以通过调用x_train_ds = x_train_ds.cache()来实现,但如果您的内存有限,我不建议这样做。

此外,我鼓励您从以下链接更详细地学习:

英文:

Your current approach will load all your images into your memory, which is inefficient. Try to learn using the python generator or using TensorFlow Dataset to preprocess your data on the fly.

For your current case, here is the example for using TensorFlow Dataset if your x_train is a NumPy array:

new_size = (224, 224)

def resize_image(image):
    image = tf.expand_dims(image, axis=-1)
    image = tf.repeat(image, 3, axis=-1)
    image = tf.image.resize(image, new_size)

x_train_ds = tf.data.Dataset.from_tensor_slices(x_train)
x_train_ds = x_train_ds.map(resize_image)

Using tf.data the resize_image function will be called for every iteration instead of loading all of it directly to your memory. But if you want to store it directly in your memory, you can still do it by calling x_train_ds = x_train_ds.cache(), but I won't recommend it if you have limited memory.

Furthermore, I encourage you to learn it in more detail from this link:

huangapple
  • 本文由 发表于 2023年2月6日 10:40:56
  • 转载请务必保留本文链接:https://go.coder-hub.com/75356910.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定