英文:
Term_evals when finding hyper parameters for XGBoost with #mlr3
问题
我是新手使用梯度提升(XGBoost)。我已经阅读了mlr3的手册,如果我理解正确的话,我想首先调整我的超参数。我不确定如何设置term_evals?在教程中,它使用了一个非常小的数字,并表示在实际应用中需要更高的数字。我怎么知道我选择的数字是否足够大?
非常感谢
我使用不同数量的term_evals运行了instance=tune(...)。当然,使用更多的term_evals需要更长时间。我检查了instance$result(instance=tune(...)),但从中我不知道如何判断term_evals是否足够大。
英文:
I'm new to gradient boosting (XGBoost). I've read the manual for mlr3, and if I understand it right, I want to first tune my hyper parameters. I'm unsure for this how to set term_evals? In the tutorial, it uses a very small number and says for real applications a higher number is needed. how do I know whether the number I've picked is high enough?
Many thanks
I ran instance=tune(...) with different numbers of term_evals. Of course, it takes longer with more. I inspected instance$result (instance=tune(...)), but from this I have no idea how to know whether term_evals was large enough or not.
答案1
得分: 2
选择合适的调优预算是一个困难的实际挑战。您可以在我们的超参数优化论文的第6.5节“何时终止HPO”中找到更多信息。您可以使用时间限制而不是评估次数。您可以设置一个对您来说可行的时间限制,例如,在您的本地机器上运行时可以设置为一天。通常,评估更多的配置是更好的选择。
英文:
Choosing the right budget for tuning is a difficult practical challenge. You can find out more in section "6.5 When to Terminate HPO" in our hyperparameter optimization paper. You could use a time limit instead of the number of evaluation. You set a time limit that is feasible for you e.g. one day if you run it on your local machine. Usually it is better to evaluate more configurations.
通过集体智慧和协作来改善编程学习和解决问题的方式。致力于成为全球开发者共同参与的知识库,让每个人都能够通过互相帮助和分享经验来进步。
评论