如果我的数据库和数据框的列长度不同,我能将值附加到数据库吗?

huangapple go评论77阅读模式
英文:

if my db and dataframe column is different length can i append the value to db

问题

如果数据库和数据框的列不相等,我可以使用DataFrame.to_sql将数据框的值添加到数据库以进行值的追加吗?

数据库 -

列A 列B 列C
1 2 3
4 5 6

数据框 -

列A 列B
7 8
9 10

现在我的数据框有2列,而我的数据库有3列,我可以使用DataFrame.to_sql追加值吗?

英文:

If database and dataframe column is not in equal can i add the value from dataframe to db using DataFrame.to_sql for appending the value

DATABASE -

Column A Column B Column C
1 2 3
4 5 6

DataFrame -

Column A Column B
7 8
9 10

now to can we my dataframe has 2 column and my db has 3 column can i append the value uing DataFrame.to_sql

答案1

得分: 1

只有在你的列允许空值时才能这样做。

这里有一个完整的示例。列 B 允许空值,而列 A 和 C 不允许:

from sqlalchemy import create_engine, MetaData, Table, Column, Integer
from sqlalchemy import insert, select
from sqlalchemy.exc import IntegrityError

engine = create_engine('sqlite://', echo=False)
meta = MetaData()

mytable = Table('mytable', meta,
    Column('A', Integer, nullable=False),
    Column('B', Integer, nullable=True),  # 允许空值
    Column('C', Integer, nullable=False)
)

meta.create_all(engine)
with engine.connect() as conn:
    conn.execute(insert(mytable).values([(1, 2, 3), (4, 5, 6)]))
    curr = conn.execute(select(mytable))

    # 完整性错误,因为缺少 C 列
    try:
        df1 = pd.DataFrame({'A': [7, 9], 'B': [8, 10]})
        df1.to_sql('mytable', conn, if_exists='append', index=False)
    except IntegrityError as err:
        print(err)

    # 工作正常,因为列 B 允许空值
    df2 = pd.DataFrame({'A': [11, 13], 'C': [12, 14]})
    df2.to_sql('mytable', conn, if_exists='append', index=False)

    # 导出数据库
    df = pd.read_sql('SELECT * FROM mytable', conn)
    print(df)

输出:

(sqlite3.IntegrityError) NOT NULL constraint failed: mytable.C
[SQL: INSERT INTO mytable ("A", "B") VALUES (?, ?)]
[parameters: ((7, 8), (9, 10))]
(Background on this error at: https://sqlalche.me/e/14/gkpj)

    A    B   C
0   1  2.0   3  # 存在的数据
1   4  5.0   6  # 存在的数据
2  11  NaN  12  # 来自 df2 的数据
3  13  NaN  14  # 来自 df2 的数据
英文:

You can only do that if your columns allow null values.

Here is a complete example. Column B allows empty values while columns A and C do not:

from sqlalchemy import create_engine, MetaData, Table, Column, Integer
from sqlalchemy import insert, select
from sqlalchemy.exc import IntegrityError

engine = create_engine('sqlite://', echo=False)
meta = MetaData()

mytable = Table('mytable', meta,
    Column('A', Integer, nullable=False),
    Column('B', Integer, nullable=True),  # Allow null values
    Column('C', Integer, nullable=False)
)

meta.create_all(engine)
with engine.connect() as conn:
    conn.execute(insert(mytable).values([(1, 2, 3), (4, 5, 6)]))
    curr = conn.execute(select(mytable))

    # Integrity error, failed because C is missing
    try:
        df1 = pd.DataFrame({'A': [7, 9], 'B': [8, 10]})
        df1.to_sql('mytable', conn, if_exists='append', index=False)
    except IntegrityError as err:
        print(err)

    # Worked because B allows null values
    df2 = pd.DataFrame({'A': [11, 13], 'C': [12, 14]})
    df2.to_sql('mytable', conn, if_exists='append', index=False)

    # Dump database
    df = pd.read_sql('SELECT * FROM mytable', conn)
    print(df)

Output:

(sqlite3.IntegrityError) NOT NULL constraint failed: mytable.C
[SQL: INSERT INTO mytable ("A", "B") VALUES (?, ?)]
[parameters: ((7, 8), (9, 10))]
(Background on this error at: https://sqlalche.me/e/14/gkpj)

    A    B   C
0   1  2.0   3  # existing data
1   4  5.0   6  # existing data
2  11  NaN  12  # data from df2
3  13  NaN  14  # data from df2

huangapple
  • 本文由 发表于 2023年1月9日 16:21:53
  • 转载请务必保留本文链接:https://go.coder-hub.com/75054672.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定