如何使用现有的数值向量来派生新变量

huangapple go评论65阅读模式
英文:

how to derive new variables from existing using a vector of values

问题

这是我所拥有的数据:

temp <- tibble::tribble(
~x1, ~x2, ~x3, ~x4, ~x5,
1, 2, 3, 'AA', 'BB',
2, 3, 4, 'AB', 'CC',
3, 4, 5, 'AC', 'DD',
4, 5, 6, 'AD', 'EE',
5, 6, 7, 'AE', 'FF',
6, 7, 8, 'AF', 'GG'
) %>% dplyr::mutate(dplyr::across(x4,as.character), dplyr::across(x5,as.character))

我想通过与值为c(1,2,3)的temp_val向量相乘来导出新变量'px1'、'px2'、'px3'。

temp_val <- c(1,2,3)

我尝试了以下代码:

temp_val <- c(1,2,3)
nam1 <- c('px1','px2','px3')
temp5 <- temp %>% mutate(across(where(is.numeric), ~ . * temp_val, .names = '{nam1}'))

我得到了以下数据:

如何使用现有的数值向量来派生新变量

我的期望是将向量值视为列,并使用这些列创建多个变量。

如何使用现有的数值向量来派生新变量

英文:

here is the data what i have

temp &lt;- tibble::tribble(
~x1, ~x2, ~x3, ~x4, ~x5,
1, 2, 3, &#39;AA&#39;, &#39;BB&#39;,
2, 3, 4, &#39;AB&#39;, &#39;CC&#39;,
3, 4, 5, &#39;AC&#39;, &#39;DD&#39;,
4, 5, 6, &#39;AD&#39;, &#39;EE&#39;,
5, 6, 7, &#39;AE&#39;, &#39;FF&#39;,
6, 7, 8, &#39;AF&#39;, &#39;GG&#39;
) %&gt;% dplyr::mutate(dplyr::across(x4,as.character), dplyr::across(x5,as.character))

I want to derive new variables 'px1', 'px2', 'px3' by multiplying with a vector temp_val with values c(1,2,3)

temp_val &lt;- c(1,2,3)

I tried the below code

temp_val &lt;- c(1,2,3)
nam1 &lt;- c(&#39;px1&#39;,&#39;px2&#39;,&#39;px3&#39;)
temp5 &lt;- temp %&gt;% mutate(across(where(is.numeric), ~ . * temp_val, .names = &#39;{nam1}&#39;))

I get below data

如何使用现有的数值向量来派生新变量

my expectation, is to have vector values considered as columns and multiple variables with those columns

如何使用现有的数值向量来派生新变量

答案1

得分: 3

我们可以创建一个命名向量,然后根据从列名循环追加p得到的名称,对temp_val的元素进行子集化。

library(dplyr)
library(stringr)
names(temp_val) <- nam1
temp %>% 
  mutate(across(where(is.numeric), ~ 
  .x * temp_val[str_c("p", cur_column())], .names = "p{.col}"))

-output

# A tibble: 6 × 8
     x1    x2    x3 x4    x5      px1   px2   px3
  <dbl> <dbl> <dbl> <chr> <chr> <dbl> <dbl> <dbl>
1     1     2     3 AA    BB        1     4     9
2     2     3     4 AB    CC        2     6    12
3     3     4     5 AC    DD        3     8    15
4     4     5     6 AD    EE        4    10    18
5     5     6     7 AE    FF        5    12    21
6     6     7     8 AF    GG        6    14    24

或者如果名称顺序相同,可以使用map2的另一种选项。

library(purrr)
map2_dfc(temp %>% 
  select(where(is.numeric)), temp_val, `*`) %>% 
 setNames(nam1)%>% 
 bind_cols(temp, .)
# A tibble: 6 × 8
     x1    x2    x3 x4    x5      px1   px2   px3
  <dbl> <dbl> <dbl> <chr> <chr> <dbl> <dbl> <dbl>
1     1     2     3 AA    BB        1     4     9
2     2     3     4 AB    CC        2     6    12
3     3     4     5 AC    DD        3     8    15
4     4     5     6 AD    EE        4    10    18
5     5     6     7 AE    FF        5    12    21
6     6     7     8 AF    GG        6    14    24
英文:

We may create a named vector and then subset the elements of the temp_val based on the name derived from appending p to the column name looped (cur_column())

library(dplyr)
library(stringr)
names(temp_val) &lt;- nam1
temp %&gt;% 
  mutate(across(where(is.numeric), ~ 
  .x * temp_val[str_c(&quot;p&quot;, cur_column())], .names = &quot;p{.col}&quot;))

-output

# A tibble: 6 &#215; 8
     x1    x2    x3 x4    x5      px1   px2   px3
  &lt;dbl&gt; &lt;dbl&gt; &lt;dbl&gt; &lt;chr&gt; &lt;chr&gt; &lt;dbl&gt; &lt;dbl&gt; &lt;dbl&gt;
1     1     2     3 AA    BB        1     4     9
2     2     3     4 AB    CC        2     6    12
3     3     4     5 AC    DD        3     8    15
4     4     5     6 AD    EE        4    10    18
5     5     6     7 AE    FF        5    12    21
6     6     7     8 AF    GG        6    14    24

Or another option if the names are in the same order, then use map2

library(purrr)
map2_dfc(temp %&gt;% 
  select(where(is.numeric)), temp_val, `*`) %&gt;% 
 setNames(nam1)%&gt;% 
 bind_cols(temp, .)
# A tibble: 6 &#215; 8
     x1    x2    x3 x4    x5      px1   px2   px3
  &lt;dbl&gt; &lt;dbl&gt; &lt;dbl&gt; &lt;chr&gt; &lt;chr&gt; &lt;dbl&gt; &lt;dbl&gt; &lt;dbl&gt;
1     1     2     3 AA    BB        1     4     9
2     2     3     4 AB    CC        2     6    12
3     3     4     5 AC    DD        3     8    15
4     4     5     6 AD    EE        4    10    18
5     5     6     7 AE    FF        5    12    21
6     6     7     8 AF    GG        6    14    24

答案2

得分: 2

除了 @akrun 的回答之外,您还可以使用逐行计算:

library(dplyr)
library(tidyr)
temp <- tibble::tribble(
  ~x1, ~x2, ~x3, ~x4, ~x5,
  1, 2, 3, 'AA', 'BB',
  2, 3, 4, 'AB', 'CC',
  3, 4, 5, 'AC', 'DD',
  4, 5, 6, 'AD', 'EE',
  5, 6, 7, 'AE', 'FF',
  6, 7, 8, 'AF', 'GG'
) %>% dplyr::mutate(dplyr::across(x4, as.character), dplyr::across(x5, as.character))

temp_val <- c(1, 2, 3)
nam1 <- c('px1', 'px2', 'px3')

temp %>% 
  rowwise() %>% 
  transmute(newvars = list(c_across(where(is.numeric)) * temp_val)) %>% 
  unnest_wider(newvars) %>% 
  setNames(nam1) %>% 
  bind_cols(temp, .)

在 2023-01-08 由 reprex 包 (v2.0.1) 创建

英文:

In addition to @akrun's answer, you could also use a row-wise calculation:

library(dplyr)
#&gt; 
#&gt; Attaching package: &#39;dplyr&#39;
#&gt; The following objects are masked from &#39;package:stats&#39;:
#&gt; 
#&gt;     filter, lag
#&gt; The following objects are masked from &#39;package:base&#39;:
#&gt; 
#&gt;     intersect, setdiff, setequal, union
library(tidyr)
temp &lt;- tibble::tribble(
  ~x1, ~x2, ~x3, ~x4, ~x5,
  1, 2, 3, &#39;AA&#39;, &#39;BB&#39;,
  2, 3, 4, &#39;AB&#39;, &#39;CC&#39;,
  3, 4, 5, &#39;AC&#39;, &#39;DD&#39;,
  4, 5, 6, &#39;AD&#39;, &#39;EE&#39;,
  5, 6, 7, &#39;AE&#39;, &#39;FF&#39;,
  6, 7, 8, &#39;AF&#39;, &#39;GG&#39;
) %&gt;% dplyr::mutate(dplyr::across(x4,as.character), dplyr::across(x5,as.character))


temp_val &lt;- c(1,2,3)
nam1 &lt;- c(&#39;px1&#39;,&#39;px2&#39;,&#39;px3&#39;)


temp %&gt;% 
  rowwise() %&gt;% 
  transmute(newvars = list(c_across(where(is.numeric))*temp_val)) %&gt;% 
  unnest_wider(newvars) %&gt;% 
  setNames(nam1) %&gt;% 
  bind_cols(temp, .)
#&gt; # A tibble: 6 &#215; 8
#&gt;      x1    x2    x3 x4    x5      px1   px2   px3
#&gt;   &lt;dbl&gt; &lt;dbl&gt; &lt;dbl&gt; &lt;chr&gt; &lt;chr&gt; &lt;dbl&gt; &lt;dbl&gt; &lt;dbl&gt;
#&gt; 1     1     2     3 AA    BB        1     4     9
#&gt; 2     2     3     4 AB    CC        2     6    12
#&gt; 3     3     4     5 AC    DD        3     8    15
#&gt; 4     4     5     6 AD    EE        4    10    18
#&gt; 5     5     6     7 AE    FF        5    12    21
#&gt; 6     6     7     8 AF    GG        6    14    24

<sup>Created on 2023-01-08 by the reprex package (v2.0.1)</sup>

huangapple
  • 本文由 发表于 2023年1月9日 01:27:36
  • 转载请务必保留本文链接:https://go.coder-hub.com/75049929.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定