计算两个或更多时间点的分数变化

huangapple go评论95阅读模式
英文:

Calculating score change at two or more time point

问题

我有一个非常简单的问题:想象一下一个认知测试,其中有6个项目,每个项目都在0-10分的标度上分别评分。

现在假设有5名患者在一天中的三个(或更多)不同时间进行了这个测试。

  1. df <- tibble(
  2. id = rep(1:5, each = 3),
  3. time = rep(c("morning", "evening", "night"), each = 1, times = 5),
  4. i1 = round(runif(15, 0, 10)),
  5. i2 = round(runif(15, 0, 10)),
  6. i3 = round(runif(15, 0, 10)),
  7. i4 = round(runif(15, 0, 10)),
  8. i5 = round(runif(15, 0, 10)),
  9. i6 = round(runif(15, 0, 10))
  10. )

现在,我该如何计算每个患者在不同时间段内每个个别项目得分的变化?欢迎使用tidyverse方法。

P.S:输出最好是这样的:

  1. df <- tibble(
  2. id = rep(1:5, each = 3),
  3. time = rep(c("morning", "evening", "night"), each = 1, times = 5),
  4. i1 = round(runif(15, 0, 10)),
  5. i2 = round(runif(15, 0, 10)),
  6. i3 = round(runif(15, 0, 10)),
  7. i4 = round(runif(15, 0, 10)),
  8. i5 = round(runif(15, 0, 10)),
  9. i6 = round(runif(15, 0, 10)),
  10. diff_morning_evening = rep(NA, 15),
  11. diff_morning_night = rep(NA, 15),
  12. diff_evening_night = rep(NA, 15),
  13. )
英文:

I have a very simple question: Imagine a cognitive test with 6 items, each of which is scored separately on a 0-10 scale
now let's say 5 patients have taken this test at three (or more) different time of the day.

  1. df &lt;- tibble(
  2. id = rep(1:5, each = 3),
  3. time = rep(c(&quot;morning&quot;, &quot;evening&quot;, &quot;night&quot;), each = 1, times = 5),
  4. i1 = round(runif(15, 0, 10)),
  5. i2 = round(runif(15, 0, 10)),
  6. i3 = round(runif(15, 0, 10)),
  7. i4 = round(runif(15, 0, 10)),
  8. i5 = round(runif(15, 0, 10)),
  9. i6 = round(runif(15, 0, 10))
  10. )

Now, how can I calculate the changes in the score of each individual item for every patient between different times of the day?
tidyverse approaches are highly appreciated.

P.S: the output should be preferably something like this:

  1. df &lt;- tibble(
  2. id = rep(1:5, each = 3),
  3. time = rep(c(&quot;morning&quot;, &quot;evening&quot;, &quot;night&quot;), each = 1, times = 5),
  4. i1 = round(runif(15, 0, 10)),
  5. i2 = round(runif(15, 0, 10)),
  6. i3 = round(runif(15, 0, 10)),
  7. i4 = round(runif(15, 0, 10)),
  8. i5 = round(runif(15, 0, 10)),
  9. i6 = round(runif(15, 0, 10)),
  10. diff_morning_evening = rep(NA, 15),
  11. diff_morning_night = rep(NA, 15),
  12. diff_evening_night = rep(NA, 15),
  13. )

答案1

得分: 3

以下是翻译好的内容:

计算变化的方法:

  • 第1行:早上 - 晚上
  • 第2行:早上 - 傍晚
  • 第3行:傍晚 - 晚上
  1. df %>%
  2. group_by(id) %>%
  3. mutate(across(i1:i6, ~ ifelse(is.na(.x - lag(.x)),
  4. lead(.x, 2) - .x, .x - lag(.x)),
  5. .names="\\{.col}_chg")) %>%
  6. ungroup()
  7. # 一个 tibble: 15 × 14
  8. id time i1 i2 i3 i4 i5 i6 i1_chg i2_chg i3_chg i4_chg
  9. <int> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
  10. 1 1 早上 1 2 4 9 5 6 7 -1 1 -8
  11. 2 1 傍晚 5 0 4 8 9 4 4 -2 0 -1
  12. 3 1 晚上 8 1 5 1 4 5 3 1 1 -7
  13. 4 2 早上 7 7 4 3 2 9 -5 -1 4 5
  14. 5 2 傍晚 8 9 1 2 4 5 1 2 -3 -1
  15. 6 2 晚上 2 6 8 8 10 2 -6 -3 7 6
  16. 7 3 早上 9 6 6 1 5 5 -8 -1 2 0
  17. 8 3 傍晚 3 2 8 1 3 10 -6 -4 2 0
  18. 9 3 晚上 1 5 8 1 3 3 -2 3 0 0
  19. 10 4 早上 7 2 9 1 5 8 1 1 -6 0
  20. 11 4 傍晚 3 5 9 5 6 3 -4 3 0 4
  21. 12 4 晚上 8 3 3 1 3 2 5 -2 -6 -4
  22. 13 5 早上 4 1 3 7 1 0 4 6 4 2
  23. 14 5 傍晚 7 2 7 7 5 2 3 1 4 0
  24. 15 5 晚上 8 7 7 9 8 4 1 5 0 2
  25. # … 还有 2 个变量:i5_chg 和 i6_chg

特殊行求和方法:

  1. df %>%
  2. group_by(id) %>%
  3. summarize(across(i1:i6, ~
  4. .x[which(time == "早上")] + .x[which(time == "晚上")]))
  5. # 一个 tibble: 5 × 7
  6. id i1 i2 i3 i4 i5 i6
  7. <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
  8. 1 1 9 3 9 10 9 11
  9. 2 2 9 13 12 11 12 11
  10. 3 3 10 11 14 2 8 8
  11. 4 4 15 5 12 2 8 10
  12. 5 5 12 8 10 16 9 4

注意:代码部分未进行翻译,仅提供了翻译好的内容。

英文:

An approach calculating the changes in a compact way:

  • 1st row: morning - night
  • 2nd row: morning - evening
  • 3rd row: evening - night
  1. df %&gt;%
  2. group_by(id) %&gt;%
  3. mutate(across(i1:i6, ~ ifelse(is.na(.x - lag(.x)),
  4. lead(.x, 2) - .x, .x - lag(.x)),
  5. .names=&quot;{.col}_chg&quot;)) %&gt;%
  6. ungroup()
  7. # A tibble: 15 &#215; 14
  8. id time i1 i2 i3 i4 i5 i6 i1_chg i2_chg i3_chg i4_chg
  9. &lt;int&gt; &lt;chr&gt; &lt;dbl&gt; &lt;dbl&gt; &lt;dbl&gt; &lt;dbl&gt; &lt;dbl&gt; &lt;dbl&gt; &lt;dbl&gt; &lt;dbl&gt; &lt;dbl&gt; &lt;dbl&gt;
  10. 1 1 morning 1 2 4 9 5 6 7 -1 1 -8
  11. 2 1 evening 5 0 4 8 9 4 4 -2 0 -1
  12. 3 1 night 8 1 5 1 4 5 3 1 1 -7
  13. 4 2 morning 7 7 4 3 2 9 -5 -1 4 5
  14. 5 2 evening 8 9 1 2 4 5 1 2 -3 -1
  15. 6 2 night 2 6 8 8 10 2 -6 -3 7 6
  16. 7 3 morning 9 6 6 1 5 5 -8 -1 2 0
  17. 8 3 evening 3 2 8 1 3 10 -6 -4 2 0
  18. 9 3 night 1 5 8 1 3 3 -2 3 0 0
  19. 10 4 morning 7 2 9 1 5 8 1 1 -6 0
  20. 11 4 evening 3 5 9 5 6 3 -4 3 0 4
  21. 12 4 night 8 3 3 1 3 2 5 -2 -6 -4
  22. 13 5 morning 4 1 3 7 1 0 4 6 4 2
  23. 14 5 evening 7 2 7 7 5 2 3 1 4 0
  24. 15 5 night 8 7 7 9 8 4 1 5 0 2
  25. # … with 2 more variables: i5_chg &lt;dbl&gt;, i6_chg &lt;dbl&gt;

Summing special rows approach

  1. df %&gt;%
  2. group_by(id) %&gt;%
  3. summarize(across(i1:i6, ~
  4. .x[which(time == &quot;morning&quot;)] + .x[which(time == &quot;night&quot;)]))
  5. # A tibble: 5 &#215; 7
  6. id i1 i2 i3 i4 i5 i6
  7. &lt;int&gt; &lt;dbl&gt; &lt;dbl&gt; &lt;dbl&gt; &lt;dbl&gt; &lt;dbl&gt; &lt;dbl&gt;
  8. 1 1 9 3 9 10 9 11
  9. 2 2 9 13 12 11 12 11
  10. 3 3 10 11 14 2 8 8
  11. 4 4 15 5 12 2 8 10
  12. 5 5 12 8 10 16 9 4

答案2

得分: 3

你可以使用combn生成所有的两两组合,并对每个组合应用diff函数来计算更改,设置FUN = diff

  1. library(tidyverse)
  2. df %>%
  3. group_by(id) %>%
  4. summarise(DIFF = combn(time, 2, paste, collapse = '_'),
  5. across(i1:i6, ~ combn(.x, 2, diff)), .groups = 'drop')
  6. # # A tibble: 15 × 8
  7. # id DIFF i1 i2 i3 i4 i5 i6
  8. # <int> <chr[1d]> <dbl[1d]> <dbl[1d]> <dbl[1d]> <dbl[1d]> <dbl[1d]> <dbl[1d]>
  9. # 1 1 morning_evening 1 -2 0 5 1 3
  10. # 2 1 morning_night -2 5 1 3 -2 -1
  11. # 3 1 evening_night -3 7 1 -2 -3 -4
  12. # 4 2 morning_evening 1 5 -2 -3 5 7
  13. # 5 2 morning_night 2 -1 6 2 -2 1
  14. # 6 2 evening_night 1 -6 8 5 -7 -6
  15. # ...

如果你想要宽格式的输出,请将上述代码传递给tidyr::pivot_wider()

  1. ... %>%
  2. pivot_wider(names_from = DIFF, values_from = i1:i6, names_prefix = 'diff_')
  3. # # A tibble: 5 × 19
  4. # id i1_diff_morning_evening i1_diff_morning_night i1_diff_evening_night i2_diff_morning_evening i2_diff_morning_night i2_diff_evening_night
  5. # <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
  6. # 1 1 1 -2 -3 -2 5 7
  7. # 2 2 1 2 1 5 -1 -6
  8. # 3 3 2 -1 -3 5 -1 -6
  9. # 4 4 1 2 1 -2 -4 -2
  10. # 5 5 6 7 1 1 0 -1
  11. #
  12. # … with 12 more variables:
  13. # i3_diff_morning_evening <dbl>, i3_diff_morning_night <dbl>, i3_diff_evening_night <dbl>,
  14. # i4_diff_morning_evening <dbl>, i4_diff_morning_night <dbl>, i4_diff_evening_night <dbl>,
  15. # i5_diff_morning_evening <dbl>, i5_diff_morning_night <dbl>, i5_diff_evening_night <dbl>,
  16. # i6_diff_morning_evening <dbl>, i6_diff_morning_night <dbl>, i6_diff_evening_night <dbl>
英文:

You can use combn to generate all combinations of 2 times, and apply diff to each combination to calculate the change by setting FUN = diff.

  1. library(tidyverse)
  2. df %&gt;%
  3. group_by(id) %&gt;%
  4. summarise(DIFF = combn(time, 2, paste, collapse = &#39;_&#39;),
  5. across(i1:i6, ~ combn(.x, 2, diff)), .groups = &#39;drop&#39;)
  6. # # A tibble: 15 &#215; 8
  7. # id DIFF i1 i2 i3 i4 i5 i6
  8. # &lt;int&gt; &lt;chr[1d]&gt; &lt;dbl[1d]&gt; &lt;dbl[1d]&gt; &lt;dbl[1d]&gt; &lt;dbl[1d]&gt; &lt;dbl[1d]&gt; &lt;dbl[1d]&gt;
  9. # 1 1 morning_evening 1 -2 0 5 1 3
  10. # 2 1 morning_night -2 5 1 3 -2 -1
  11. # 3 1 evening_night -3 7 1 -2 -3 -4
  12. # 4 2 morning_evening 1 5 -2 -3 5 7
  13. # 5 2 morning_night 2 -1 6 2 -2 1
  14. # 6 2 evening_night 1 -6 8 5 -7 -6
  15. # ...

If you want a wide-format output, pass the above code to tidyr::pivot_wider():

  1. ... %&gt;%
  2. pivot_wider(names_from = DIFF, values_from = i1:i6, names_prefix = &#39;diff_&#39;)
  3. # # A tibble: 5 &#215; 19
  4. # id i1_diff_morning_evening i1_diff_morning_night i1_diff_evening_night i2_diff_morning_evening i2_diff_morning_night i2_diff_evening_night
  5. # &lt;int&gt; &lt;dbl&gt; &lt;dbl&gt; &lt;dbl&gt; &lt;dbl&gt; &lt;dbl&gt; &lt;dbl&gt;
  6. # 1 1 1 -2 -3 -2 5 7
  7. # 2 2 1 2 1 5 -1 -6
  8. # 3 3 2 -1 -3 5 -1 -6
  9. # 4 4 1 2 1 -2 -4 -2
  10. # 5 5 6 7 1 1 0 -1
  11. #
  12. # … with 12 more variables:
  13. # i3_diff_morning_evening &lt;dbl&gt;, i3_diff_morning_night &lt;dbl&gt;, i3_diff_evening_night &lt;dbl&gt;,
  14. # i4_diff_morning_evening &lt;dbl&gt;, i4_diff_morning_night &lt;dbl&gt;, i4_diff_evening_night &lt;dbl&gt;,
  15. # i5_diff_morning_evening &lt;dbl&gt;, i5_diff_morning_night &lt;dbl&gt;, i5_diff_evening_night &lt;dbl&gt;,
  16. # i6_diff_morning_evening &lt;dbl&gt;, i6_diff_morning_night &lt;dbl&gt;, i6_diff_evening_night &lt;dbl&gt;

huangapple
  • 本文由 发表于 2023年1月8日 22:38:57
  • 转载请务必保留本文链接:https://go.coder-hub.com/75048630.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定