错误:在R中,自定义函数的主体中包含了~(波浪号)和/或$(美元符号)。

huangapple go评论135阅读模式
英文:

Error: Custom function that has ~ (tilde) and/or $ (dollar sign) in the body in r

问题

Here are the translated parts of your code:

  1. 我正在尝试通过在R中使用自定义/用户定义的函数来简化我的代码。
  2. 我想将以下内容转化为函数:
  3. ```R
  4. shapiro <- shapiro.test(data$count)
  1. if(shapiro$p.value > 0.05) {
  2. require(tidyverse)
  3. bart <- bartlett.test(count ~ species, data=data)
  4. }
  1. if ((shapiro$p.value > 0.05) && exists("bart")){
  2. if(bart$p.value > 0.05) {
  3. OneWay <- aov(count ~ species, data = data)
  4. oneway <- summary(OneWay) #normal distribution and equal variance
  5. } else {
  6. welch <- oneway.test(count ~ species, data = data) #Welch ANOVA, normal distribution, unequal variance
  7. }
  8. } else {
  9. fligner <- fligner.test(count ~ species, data = data)
  10. #if not normal distribution, perform fligner-killen homogeneity of variance test
  11. }

第一组我尝试过的函数:

  1. perform_shapiro <- function(df, contvar) {
  2. shapiro.test(df$contvar)
  3. }
  4. perform_shapiro(df = data, contvar = count)

其中返回错误:Error in shapiro.test(df$contvar) : is.numeric(x) is not TRUE.

第二组成功了:

  1. perform_barlett <- function(df, contvar, catvar) {
  2. if(shapiro$p.value > 0.05) {
  3. require(tidyverse)
  4. bart <- bartlett.test(contvar ~ catvar, data=df)
  5. return(bart)
  6. }
  7. }
  8. perform_bartlett(data, count, species)

但第三组也出现了新错误:

  1. perform_oneway_welch_fligner <- function(df, contvar, catvar){
  2. if ((shapiro$p.value > 0.05) && exists("bart")){
  3. if(bart$p.value > 0.05) {
  4. OneWay <- aov(contvar ~ catvar, data = df)
  5. oneway <- summary(OneWay) #normal distribution and equal variance
  6. print(oneway)
  7. } else {
  8. welch <- oneway.test(contvar ~ catvar, data = df) #Welch ANOVA, normal distribution, unequal variance
  9. print(welch)
  10. }
  11. } else {
  12. fligner <- fligner.test(contvar ~ catvar, data = df)
  13. #if not normal distribution, perform fligner-killen homogeneity of variance test
  14. print(fligner)
  15. }
  16. }
  17. perform_oneway_welch_fligner(data, count, species)

Error in eval(predvars, data, env) : object 'count' not found.

Data

  1. data <- iris
  2. # rename columns
  3. names(data)[names(data) == "Sepal.Length"] <- "count"

FYI shapiro is < 0.05, so bart should not exist, hence fligner should be returned.
Contvar = continuous variable, catvar = categorical variable.

我最初认为错误是由于$和~,但第二个函数效果很好,并且它内部有一个波浪线公式,所以现在我不确定。谢谢!

  1. Please note that I have provided the translated parts of your code as requested. If you have any specific questions or need further assistance with your code, feel free to ask.
  2. <details>
  3. <summary>英文:</summary>
  4. I am trying to simplify my code by using custom/user-defined functions in r.
  5. I want to turn the following into functions:

shapiro <- shapiro.test(data$count)

if(shapiro$p.value > 0.05) {
require(tidyverse)
bart <- bartlett.test(count ~ species, data=data)
}

if ((shapiro$p.value > 0.05) && exists("bart")){
if(bart$p.value > 0.05) {
OneWay <- aov(count ~ species, data = data)
oneway <- summary(OneWay) #normal distibution and equal varaince
} else {
welch <- oneway.test(count ~ species, data = data) #Welch ANOVA, normal distribution, unequal variance
}
} else {
fligner <- fligner.test(count ~ species, data = data)
#if not normal distribution, perform fligner-killen homogeneity of variance test
}

  1. The first set I have tried:

perform_shapiro <- function(df, contvar) {
shapiro.test(df$contvar)
}
perform_shapiro(df = data, contvar = count)

  1. Which returns the error: Error in shapiro.test(df$contvar) : is.numeric(x) is not TRUE.
  2. The second set is successful with:

perform_barlett <- function(df, contvar, catvar) {
if(shapiro$p.value > 0.05) {
require(tidyverse)
bart <- bartlett.test(contvar ~ catvar, data=df)
return(bart)
}
}
perform_bartlett(data, count, species)

  1. But the third also has a new error:

perform_oneway_welch_fligner <- function(df, contvar, catvar){
if ((shapiro$p.value > 0.05) && exists("bart")){
if(bart$p.value > 0.05) {
OneWay <- aov(contvar ~ catvar, data = df)
oneway <- summary(OneWay) #normal distibution and equal varaince
print(oneway)
} else {
welch <- oneway.test(contvar ~ catvar, data = df) #Welch ANOVA, normal distribution, unequal variance
print(welch)
}
} else {
fligner <- fligner.test(contvar ~ catvar, data = df)
#if not normal distribution, perform fligner-killen homogeneity of variance test
print(fligner)
}
}
perform_oneway_welch_fligner(data, count, species)

  1. Error in eval(predvars, data, env) : object &#39;count&#39; not found.
  2. #### Data

data <- iris

rename columns

names(data)[names(data) == "Sepal.Length"] <- "count"

  1. FYI shapiro is &lt; 0.05, so bart should not exist, hence fligner should be returned.
  2. Contvar = continuous variable, catvar = categorical variable.
  3. I thought the errors at first were due to $ and ~, but the second function works well and it has a tilde formula inside, so now I am unsure. Thanks!
  4. </details>
  5. # 答案1
  6. **得分**: 1
  7. 以下是代码的中文翻译:
  8. ``` r
  9. # 执行Shapiro-Wilk正态性检验
  10. perform_shapiro <- function(df, contvar) {
  11. contvar <- as.character(substitute(contvar))
  12. shapiro.test(df[[contvar]])
  13. }
  14. # 执行Bartlett方差齐性检验
  15. perform_bartlett <- function(df, contvar, catvar) {
  16. contvar <- as.character(substitute(contvar))
  17. catvar <- as.character(substitute(catvar))
  18. fmla <- reformulate(catvar, contvar)
  19. shapiro <- shapiro.test(df[[contvar]])
  20. if (shapiro$p.value > 0.05) {
  21. bartlett.test(fmla, data = df)
  22. }
  23. }
  24. # 执行One-Way ANOVA或Welch ANOVA或Fligner-Killeen方差齐性检验
  25. perform_oneway_welch_fligner <- function(df, contvar, catvar){
  26. contvar <- as.character(substitute(contvar))
  27. catvar <- as.character(substitute(catvar))
  28. fmla <- reformulate(catvar, contvar)
  29. shapiro <- shapiro.test(df[[contvar]])
  30. bart <- bartlett.test(fmla, data = df)
  31. if ((shapiro$p.value > 0.05) && !is.null(bart)){
  32. if(bart$p.value > 0.05) {
  33. OneWay <- aov(fmla, data = df)
  34. summary(OneWay) # 正态分布和方差齐性
  35. } else {
  36. # Welch ANOVA,正态分布,不等方差
  37. oneway.test(fmla, data = df)
  38. }
  39. } else {
  40. # 如果不是正态分布,则执行Fligner-Killeen方差齐性检验
  41. fligner.test(fmla, data = df)
  42. }
  43. }
  44. # 数据集为鸢尾花数据
  45. data <- iris
  46. names(data)[names(data) == "Sepal.Length"] <- "count"
  47. # 执行Shapiro-Wilk正态性检验
  48. perform_shapiro(df = data, contvar = count)
  49. #>
  50. #> Shapiro-Wilk正态性检验
  51. #>
  52. #> 数据:df[[contvar]]
  53. #> W = 0.97609, p-value = 0.01018
  54. # 返回NULL(不可见)
  55. perform_bartlett(data, count, Species)
  56. # 执行One-Way ANOVA或Welch ANOVA或Fligner-Killeen方差齐性检验
  57. perform_oneway_welch_fligner(data, count, Species)
  58. #>
  59. #> Fligner-Killeen方差齐性检验
  60. #>
  61. #> 数据:按Species分类的count
  62. #> Fligner-Killeen:中位数卡方 = 11.618,自由度 = 2,p值 = 0.003

于2023-01-06使用reprex v2.0.2创建

英文:

Here is a full solution, answering to the OP's comments.

  1. perform_shapiro &lt;- function(df, contvar) {
  2. contvar &lt;- as.character(substitute(contvar))
  3. shapiro.test(df[[contvar]])
  4. }
  5. perform_bartlett &lt;- function(df, contvar, catvar) {
  6. contvar &lt;- as.character(substitute(contvar))
  7. catvar &lt;- as.character(substitute(catvar))
  8. fmla &lt;- reformulate(catvar, contvar)
  9. shapiro &lt;- shapiro.test(df[[contvar]])
  10. if(shapiro$p.value &gt; 0.05) {
  11. bartlett.test(fmla, data = df)
  12. }
  13. }
  14. perform_oneway_welch_fligner &lt;- function(df, contvar, catvar){
  15. contvar &lt;- as.character(substitute(contvar))
  16. catvar &lt;- as.character(substitute(catvar))
  17. fmla &lt;- reformulate(catvar, contvar)
  18. shapiro &lt;- shapiro.test(df[[contvar]])
  19. bart &lt;- bartlett.test(fmla, data = df)
  20. if ((shapiro$p.value &gt; 0.05) &amp;&amp; !is.null(bart)){
  21. if(bart$p.value &gt; 0.05) {
  22. OneWay &lt;- aov(fmla, data = df)
  23. summary(OneWay) #normal distibution and equal varaince
  24. } else {
  25. # Welch ANOVA, normal distribution, unequal variance
  26. oneway.test(fmla, data = df)
  27. }
  28. } else {
  29. #if not normal distribution, perform fligner-killen homogeneity of variance test
  30. fligner.test(fmla, data = df)
  31. }
  32. }
  33. data &lt;- iris
  34. names(data)[names(data) == &quot;Sepal.Length&quot;] &lt;- &quot;count&quot;
  35. perform_shapiro(df = data, contvar = count)
  36. #&gt;
  37. #&gt; Shapiro-Wilk normality test
  38. #&gt;
  39. #&gt; data: df[[contvar]]
  40. #&gt; W = 0.97609, p-value = 0.01018
  41. # returns NULL invisiby
  42. perform_bartlett(data, count, Species)
  43. perform_oneway_welch_fligner(data, count, Species)
  44. #&gt;
  45. #&gt; Fligner-Killeen test of homogeneity of variances
  46. #&gt;
  47. #&gt; data: count by Species
  48. #&gt; Fligner-Killeen:med chi-squared = 11.618, df = 2, p-value = 0.003

<sup>Created on 2023-01-06 with reprex v2.0.2</sup>

答案2

得分: 0

第一个函数可以使用匿名函数来解决:

  1. perform_shapiro <- function(x) {
  2. shapiro.test(x)
  3. }
  4. perform_shapiro(data$count)

(抱歉,在玩弄了一些后,我发现这个方法有效!但在第三个函数中(即用 x 替换公式时)不起作用)

英文:

The first function could be solved using an anonymous function

  1. perform_shapiro &lt;- function(x) {
  2. shapiro.test(x)
  3. }
  4. perform_shapiro(data$count)

(sorry after playing around a bit I figure out that this works! It did not work in the third function (i.e. replacing the formulas with x))

huangapple
  • 本文由 发表于 2023年1月6日 13:31:35
  • 转载请务必保留本文链接:https://go.coder-hub.com/75027266.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定