英文:
Setting an index of a binary tree in go
问题
我正在尝试自学数据结构和算法,并且正在努力找出向二叉树添加索引的最佳方法。
我猜最好的方法是修改中序遍历操作,但我不确定如何实现并在每次插入和删除函数之后链接它。
type BinarySearchNode struct {
Left *BinarySearchNode
Right *BinarySearchNode
Parent *BinarySearchNode
Data int
Index int
}
func (BSN *BinarySearchNode) Insert(value int) {
if BSN.Data > value {
if BSN.Left == nil {
BSN.Left = &BinarySearchNode{Data: value, Parent: BSN}
return
}
BSN.Left.Insert(value)
return
}
if BSN.Right == nil {
BSN.Right = &BinarySearchNode{Data: value, Parent: BSN}
return
}
BSN.Right.Insert(value)
}
func (BSN *BinarySearchNode) setIndex(node *BinarySearchNode, count int) int {
if node == nil {
return count
}
if node.Right == nil && node.Left == nil {
node.Index = count
}
node.setIndex(node.Left, count+1)
node.setIndex(node.Right, count+1)
return count
}
以上是你提供的代码部分的翻译。
英文:
Im trying to teach myself data structures & algos and I am trying to figure out the best way to add an index to a binary tree
Im guessing the best way to do this is to modify an in orderTraversal operation but im not exactly sure how I would implement this and chain that on after every insert and delete function.
type BinarySearchNode struct {
Left *BinarySearchNode
Right *BinarySearchNode
Parent *BinarySearchNode
Data int
Index int
}
func (BSN *BinarySearchNode) Insert(value int){
if BSN.Data > value {
if BSN.Left == nil{
BSN.Left = &BinarySearchNode{Data:value, Parent:BSN}
return
}
BSN.Left.Insert(value)
return
}
if BSN.Right == nil{
BSN.Right = &BinarySearchNode{Data:value, Parent: BSN}
return
}
BSN.Right.Insert(value)
}
func (BSN *BinarySearchNode) setIndex(node *BinarySearchNode, count int)(int){
if node == nil{
return count
}
if node.Right == nil && node.Left == nil{
node.Index = count
}
node.setIndex(node.Left, count+1)
node.setIndex(node.Right, count+1)
return count
}
答案1
得分: 1
我有一段用于在golang中实现二叉树的代码,可能对你有帮助。
package main
import (
"fmt"
"math"
)
// 二叉树中的单个节点
type Node struct {
// 节点包含的值
Value int
// 节点的左子节点
Left *Node
// 节点的右子节点
Right *Node
}
type BinaryTree struct {
Root *Node
}
// 在二叉树中插入元素
func (tree *BinaryTree) Insert(value int) {
if tree.Root == nil {
node := new(Node)
node.Value = value
tree.Root = node
return
}
current := tree.Root
for {
if value < current.Value {
if current.Left == nil {
node := new(Node)
node.Value = value
current.Left = node
return
} else {
current = current.Left
}
} else {
if current.Right == nil {
node := new(Node)
node.Value = value
current.Right = node
return
} else {
current = current.Right
}
}
}
}
// 递归前序遍历
func (tree *BinaryTree) RecursivePreOrder(root *Node) {
if root == nil {
return
}
fmt.Println(root.Value)
tree.RecursivePreOrder(root.Left)
tree.RecursivePreOrder(root.Right)
}
// 迭代前序遍历
func (tree *BinaryTree) IterativePreOrder(root *Node) {
stack := []*Node{}
for {
for root != nil {
fmt.Println(root.Value)
stack = append([]*Node{root}, stack...)
root = root.Left
}
if len(stack) == 0 {
break
}
root = stack[0]
stack = stack[1:]
root = root.Right
}
}
// 递归中序遍历
func (tree *BinaryTree) RecursiveInOrder(root *Node) {
if root == nil {
return
}
tree.RecursiveInOrder(root.Left)
fmt.Println(root.Value)
tree.RecursiveInOrder(root.Right)
}
// 迭代中序遍历
func (tree *BinaryTree) IterativeInOrder(root *Node) {
var stack []*Node
for {
for root != nil {
stack = append([]*Node{root}, stack...)
root = root.Left
}
if len(stack) == 0 {
break
}
root = stack[0]
stack = stack[1:]
fmt.Println(root.Value)
root = root.Right
}
}
// 递归后序遍历
func (tree *BinaryTree) RecursivePostOrder(root *Node) {
if root == nil {
return
}
tree.RecursivePostOrder(root.Left)
tree.RecursivePostOrder(root.Right)
fmt.Println(root.Value)
}
// 迭代后序遍历
func (tree *BinaryTree) IterativePostOrder(root *Node) {
stack := []*Node{}
var previous *Node = nil
for {
for root != nil {
stack = append([]*Node{root}, stack...)
root = root.Left
}
for root == nil && len(stack) != 0 {
root = stack[0]
if root.Right == nil || root.Right == previous {
fmt.Println(root.Value)
stack = stack[1:]
previous = root
root = nil
} else {
root = root.Right
}
}
if len(stack) == 0 {
break
}
}
}
// 层序遍历
func (tree *BinaryTree) LevelOrder(root *Node) {
// 用于执行广度优先遍历的队列
queue := []*Node{}
if root != nil {
queue = append(queue, root)
}
for len(queue) > 0 {
root = queue[0]
queue = queue[1:]
fmt.Println(root.Value)
if root.Left != nil {
queue = append(queue, root.Left)
}
if root.Right != nil {
queue = append(queue, root.Right)
}
}
}
// 计算二叉树的大小(节点数量)
func (tree *BinaryTree) Size(root *Node) int {
if root == nil {
return 0
}
sum := tree.Size(root.Left) + 1 + tree.Size(root.Right)
return sum
}
// 获取二叉树中指定索引的节点
func (tree *BinaryTree) ElementAt(root *Node, index int) *Node {
if index > tree.Size(root)-1 {
fmt.Println("索引不存在")
return nil
}
leftSize := tree.Size(root.Left)
if index == leftSize {
return root
} else if index < leftSize {
return tree.ElementAt(root.Left, index)
} else {
return tree.ElementAt(root.Right, index-leftSize-1)
}
}
// 计算二叉树的高度
func (tree *BinaryTree) Height(root *Node) int {
if root == nil {
return -1
}
return int(math.Max(float64(tree.Height(root.Left)), float64(tree.Height(root.Right)))) + 1
}
// 程序的入口点
func main() {
tree := new(BinaryTree)
tree.Insert(44)
tree.Insert(55)
tree.Insert(33)
fmt.Println(tree.Height(tree.Root))
}
希望对你有所帮助!
英文:
I have a piece of code for the implementation of binary tree in golang. It may help you.
package main
import (
"fmt"
"math"
)
// A single Node in a binary tree
type Node struct {
// Value contained by the node
Value int
// Left subnode of the node
Left *Node
// Right subnode of the node
Right *Node
}
type BinaryTree struct {
Root *Node
}
// inserting the element in the binary tree
func (tree *BinaryTree) Insert(value int) {
if tree.Root == nil {
node := new(Node)
node.Value = value
tree.Root = node
return
}
current := tree.Root
for {
if value < current.Value {
if current.Left == nil {
node := new(Node)
node.Value = value
current.Left = node
return
} else {
current = current.Left
}
} else {
if current.Right == nil {
node := new(Node)
node.Value = value
current.Right = node
return
} else {
current = current.Right
}
}
}
}
// current left right
func (tree *BinaryTree) RecursivePreOrder(root *Node) {
if root == nil {
return
}
fmt.Println(root.Value)
tree.RecursivePreOrder(root.Left)
tree.RecursivePreOrder(root.Right)
}
func (tree *BinaryTree) IterativePreOrder(root *Node) {
stack := []*Node{}
for {
for root != nil {
fmt.Println(root.Value)
stack = append([]*Node{root}, stack...)
root = root.Left
}
if len(stack) == 0 {
break
}
root = stack[0]
stack = stack[1:]
root = root.Right
}
}
func (tree *BinaryTree) RecursiveInOrder(root *Node) {
if root == nil {
return
}
tree.RecursiveInOrder(root.Left)
fmt.Println(root.Value)
tree.RecursiveInOrder(root.Right)
}
func (tree *BinaryTree) IterativeInOrder(root *Node) {
var stack []*Node
for {
for root != nil {
stack = append([]*Node{root}, stack...)
root = root.Left
}
if len(stack) == 0 {
break
}
root = stack[0]
stack = stack[1:]
fmt.Println(root.Value)
root = root.Right
}
}
func (tree *BinaryTree) RecursivePostOrder(root *Node) {
if root == nil {
return
}
tree.RecursivePostOrder(root.Left)
tree.RecursivePostOrder(root.Right)
fmt.Println(root.Value)
}
func (tree *BinaryTree) IterativePostOrder(root *Node) {
stack := []*Node{}
var previous *Node = nil
for {
for root != nil {
stack = append([]*Node{root}, stack...)
root = root.Left
}
for root == nil && len(stack) != 0 {
root = stack[0]
if root.Right == nil || root.Right == previous {
fmt.Println(root.Value)
stack = stack[1:]
previous = root
root = nil
} else {
root = root.Right
}
}
if len(stack) == 0 {
break
}
}
}
func (tree *BinaryTree) LevelOrder(root *Node) {
// a queue for performing level order traversal of breadth first traversal
queue := []*Node{}
if root != nil {
queue = append(queue, root)
}
for len(queue) > 0 {
root = queue[0]
queue = queue[1:]
fmt.Println(root.Value)
if root.Left != nil {
queue = append(queue, root.Left)
}
if root.Right != nil {
queue = append(queue, root.Right)
}
}
}
func (tree *BinaryTree) Size(root *Node) int {
if root == nil {
return 0
}
sum := tree.Size(root.Left) + 1 + tree.Size(root.Right)
return sum
}
func (tree *BinaryTree) ElementAt(root *Node, index int) *Node {
if index > tree.Size(root)-1 {
fmt.Println("Index doesnot exist")
return nil
}
leftSize := tree.Size(root.Left)
if index == leftSize {
return root
} else if index < leftSize {
return tree.ElementAt(root.Left, index)
} else {
return tree.ElementAt(root.Right, index-leftSize-1)
}
}
func (tree *BinaryTree) Height(root *Node) int {
if root == nil {
return -1
}
return int(math.Max(float64(tree.Height(root.Left)), float64(tree.Height(root.Right)))) + 1
}
// starting point of the program
func main() {
tree := new(BinaryTree)
tree.Insert(44)
tree.Insert(55)
tree.Insert(33)
fmt.Println(tree.Height(tree.Root))
}
通过集体智慧和协作来改善编程学习和解决问题的方式。致力于成为全球开发者共同参与的知识库,让每个人都能够通过互相帮助和分享经验来进步。
评论