大O表示法(算法)

huangapple go评论83阅读模式
英文:

Big O notation (Algorithms)

问题

你好,我对大O表示法不太了解,对于以下内容我有困惑,如果有人能够友好地解释一下如何计算,我将不胜感激。

int sum=1;
for(int count=n; count>0; count/=2) {
sum=sum*count;
}


<details>
<summary>英文:</summary>

Hi I am new to Big O Notation and having trouble specifying big O for the following if someone could kindly explain to me how to work it out please

int sum=1;
for(int count=n; count>0; count/=2) {
sum=sum*count;
}




</details>


# 答案1
**得分**: 3

每当`count`被2除,它将是`Theta(log n)`(从`n`到`0`)。因此,它也是`O(log(n))`。

<details>
<summary>英文:</summary>

As each time `count` is divided by 2, it will be `Theta(log n)` (from `n` to `0`). Hence, it is in `O(log(n))` as well.

</details>



# 答案2
**得分**: 1

在第一行中,代码将运行一次,因此对于它,复杂性为O(1)。
在第二行中,一个for循环将运行直到count > 0,我们可以看到它每次循环都会除以2,因此它将无限继续运行。因此,基本上无法对无限循环应用大O表示法。同样,您也不能将大O应用于循环内的代码。因此,如果存在任何O(infinite),那么它可能是一个答案,但实际上不存在。因此,只有当n<=0时,才会执行代码,并且复杂性为O(1)。

<details>
<summary>英文:</summary>

In the first line, the code will run once, so for it, the complexity is O(1).
In second line a for loop will run until count &gt; 0 and we can see that it will be divided by 2 every time loop runs and so it will just go on continuously infinite times. So basically, you cannot apply Big O notation on an infinite loop. And so also you cannot apply big O to the code inside the loop as well. So if there exist any O(infinite) then it could be an answer, but it won&#39;t exist. So you cannot define time complexity until and unless n&lt;=0. if n&lt;=0 then only the code will run once and complexity will be O(1).

</details>



# 答案3
**得分**: 1

*count* 在每次迭代中减半。如果 `n = 64`:

step1 => count = 64
step2 => count = 32
step3 => count = 16
...

因此,其最坏情况的时间复杂度为 `O(log n)`。

然而,在这种情况下,您的循环体具有恒定数量的操作,因此,最佳情况、最坏情况和平均情况相同,并且:

    Ω(log n) = Θ(log n) = O(log n)

<details>
<summary>英文:</summary>

*count* gets halved per each iteration. If `n = 64`:

step1 => count = 64
step2 => count = 32
step3 => count = 16
...

Therefore, its worst case scenario has a `O(log n)` time complexity.

In this case, however, your loop&#39;s body has a constant number of operations, therefore, best, worst, and average case scenarios are same, and:

    Ω(log n) = Θ(log n) = O(log n)

</details>



huangapple
  • 本文由 发表于 2020年10月20日 20:33:37
  • 转载请务必保留本文链接:https://go.coder-hub.com/64445271.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定