获取连续子数组大小的最大尺寸

huangapple go评论68阅读模式
英文:

Get consecutive subarray size with largest size

问题

我有一个数字数组,现在我想找到所有连续子数组的和,其值与小于等于 k。我想返回最大的子数组大小。

这是我的程序:

public static int process(List<Integer> arr, int k) {
    int size = 0;
    for (int i = 0; i < arr.size(); i++) {
        int sum = 0;
        for (int j = i; j < arr.size(); j++) {
            sum += arr.get(j);
            if (sum <= k) {
                size = Math.max(size, j - i + 1);
            }
        }
    }
    return size;
}

约束条件:

  • 数组大小在1到100000之间。
  • 数组元素在1到100之间。
  • k 在1到1000000之间。

解释:

Arrays.asList(2, 3, 5, 1, 1, 2, 1), 7

arr = 2, 3, 5, 1, 1, 2, 1

k = 7

可能的子数组

[2], [3], [5], [1], [1], [2], [1]

[2,3], [5,1], [1,1], [1,2], [2,1]

[5,1,1], [1,1,2], [1,2,1]

[1,1,2,1]

最大子数组是 [1,1,2,1] = 长度为4因此程序应返回4

上周我在一场竞争性考试中得到了这个任务当我使用这段代码时它只通过了50%的测试用例对于一些隐藏的测试用例它未能产生正确的输出还有一些测试用例提示超时问题

我的代码有什么问题

**更新:**
稍微修改了我的代码并添加了一个示例

<details>
<summary>英文:</summary>

I have an array of numbers, now I want to find all the consecutive subarray sums whose value matches with less than or equal to k. I want to return the largest subarray size.

This is my program:



    public static int process(List&lt;Integer&gt; arr, int k) {
        int size = 0;
        for (int i = 0; i &lt; arr.size(); i++) {
            int sum = 0;
            for (int j = i; j &lt; arr.size(); j++) {
                sum += arr.get(j);
                if (sum &lt;= k) {
                    size = Math.max(size, j - i + 1);
                }
            }
        }
        return size;
    }
	
**constraints:**

    arr size is between 1 to 100000
    array elements are between 1 to 100
    k is between 1 to 1000000
    	

**Explanation:**

    Arrays.asList(2, 3, 5, 1, 1, 2, 1), 7
    
    arr = 2, 3, 5, 1, 1, 2, 1
    
    k= 7

possible sub arrays:

    [2], [3], [5], [1], [1], [2], [1]
    
    [2,3], [5,1], [1,1], [1,2], [2,1]
    
    [5,1,1], [1,1,2], [1,2,1]
    
    [1,1,2,1]
    
    Maximum sub array is [1,1,2,1] = its length is 4. So program should return 4.

I got this task in a competitive exam last week, when I used this code it has passed only 50% test cases. It failed for some hidden test cases saying wrong output, and some test cases saying time out.	

What is the issue with my code?

**Update:**
Modified my code little bit. And added a sample example.

</details>


# 答案1
**得分**: 1

嵌套循环意味着性能为 _O(n<sup>2</sup>)_你需要重新思考算法

下面是一个 _O(n)_ 的解决方案我会通过示例来展示编写代码仍然是你的挑战

我们需要一种方法来知道特定索引之前的值的总和有了这个我们可以计算 `sumRange(i, j) = sumBefore(j) - sumBefore(i)`。

因为我们正在寻找 `sumRange(i, j) = k`,我们需要检查是否有 `sumBefore(i) = sumBefore(j) - k`。如果有我们就有一个候选的范围`size = j - i`。

因此遍历这些值并计算累积和构建一个从累积和到导致该累积和的值的 `Map`。

假设数组是 `[1, 6, 5, 3, 2, 8, 4, 2, 7, 1]`,`k = 13`:

```lang-java
索引:          0   1   2   3   4   5   6   7   8   9
值:            1   6   5   3   2   8   4   2   7   1
累积和:     0   1   7  12  15  17  25  29  31  38  39   sumBefore
                                          
之后索引: 0   1   2   3   4   5   6   7   8   9  10   index

添加虚拟的 0 → 0 映射只是为了简化代码逻辑。

当你进行迭代时,你拥有到目前为止(包括)的累积和,即 sumBefore(i + 1),因此查看是否有一个范围,即 sumBefore(x) = sumBefore(i + 1) - k = accSum - k,因此在映射中查找 accSum - k,如果找到,该值是 x,意味着我们有一个候选的范围 x, i+1

希望上述内容都讲得清楚。


更新

问题已更改为寻找和 <= k,而不仅仅是寻找和恰好等于 k

通过上面的逻辑,可以很容易地通过将 Map 更改为 TreeMap,或者更具体地说是 NavigableMap,并将 get() 调用替换为 ceilingEntry() 调用来实现:

返回与大于等于给定键的最小键关联的键值映射;如果没有这样的键,则返回 null

如果返回的键(和)大于参数,结果是小于 k 的子数组和。

英文:

Nested loops means that performance is O(n<sup>2</sup>). You need to re-think the algorithm.

Below is an O(n) solution, which I will show by example. Writing the code is still your challenge.

What we need is a way to know the sum of values before a particular index. With that we can calculate sumRange(i, j) = sumBefore(j) - sumBefore(i).

Since we're looking for sumRange(i, j) = k, we need to check if we have a sumBefore(i) = sumBefore(j) - k. If we do, we have a candidate range with size = j - i.

So, iterate the values and calculate the accumulated sum. Build a Map of accSum to indexAfter the value leading to that accumulated sum.

Say the array is [1, 6, 5, 3, 2, 8, 4, 2, 7, 1] and k = 13:

Index:          0   1   2   3   4   5   6   7   8   9
Value:          1   6   5   3   2   8   4   2   7   1
accSum:     0   1   7  12  15  17  25  29  31  38  39   sumBefore
↓   ↓   ↓   ↓   ↓   ↓   ↓   ↓   ↓   ↓   ↓
indexAfter: 0   1   2   3   4   5   6   7   8   9  10   index

Adding the dummy 0 → 0 mapping just simplifies the logic of your code.

As you iterate, you have the accumulated sum up to now, inclusive, i.e. sumBefore(i + 1), so look to see if we have a range, i.e. sumBefore(x) = sumBefore(i + 1) - k = accSum - k, so look in the map for accSum - k, and if found, the value is x, meaning we have a candidate range of x, i+1.

I hope that all made sense.


UPDATE

The question was changed to look for sums &lt;= k, not just sums exactly equal to k.

This is easily done with the logic above by changing the Map to a TreeMap, or more specifically a NavigableMap, and replace the get() call with a ceilingEntry() call:

> Returns a key-value mapping associated with the least key greater than or equal to the given key, or null if there is no such key.

If the returned key (sum) is greater than the parameter, the result is a subarray sum that is less than k.

huangapple
  • 本文由 发表于 2020年9月19日 03:15:51
  • 转载请务必保留本文链接:https://go.coder-hub.com/63961612.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定