java.lang.RuntimeException: Unsupported literal type class org.apache.spark.sql.Dataset /Spark – JAVA

huangapple go评论72阅读模式
英文:

java.lang.RuntimeException: Unsupported literal type class org.apache.spark.sql.Dataset /Spark - JAVA

问题

我有以下的代码:

Dataset<Row> dataframe = dfjoin.select(when(df1.col("dateTracking_hour_minute")
    .between(df.col("heureDebut"), df.col("heureFin")),
    dfjoin.filter(col("acc_status").equalTo(0).and(col("acc_previous").equalTo(1)))));

当我运行时,它抛出异常:

java.lang.RuntimeException: Unsupported literal type class org.apache.spark.sql.Dataset [ID_tracking: bigint, tracking_time: timestamp ... 109 more fields]
    at org.apache.spark.sql.catalyst.expressions.Literal$.apply(literals.scala:78)
    at org.apache.spark.sql.catalyst.expressions.Literal$.$anonfun$create$2(literals.scala:164)
    at scala.util.Failure.getOrElse(Try.scala:222)
    at org.apache.spark.sql.catalyst.expressions.Literal$.create(literals.scala:164)
    at org.apache.spark.sql.functions$.typedLit(functions.scala:127)
    at org.apache.spark.sql.functions$.lit(functions.scala:110)
    at org.apache.spark.sql.functions$.when(functions.scala:1341)
    at org.apache.spark.sql.functions.when(functions.scala)
    at factory.Arret_Alert.check(Arret_Alert.java:44)

有什么想法吗?

谢谢。

英文:

I have the following code :

  Dataset &lt;Row&gt; dataframe =   dfjoin.select(when(df1.col(&quot;dateTracking_hour_minute&quot;)
                          .between(df.col(&quot;heureDebut&quot;),df.col(&quot;heureFin&quot;)),
                  dfjoin.filter(col(&quot;acc_status&quot;).equalTo(0).and(col(&quot;acc_previous&quot;).equalTo(1)))));

When I run , it throws an exception :

java.lang.RuntimeException: Unsupported literal type class org.apache.spark.sql.Dataset [ID_tracking: bigint, tracking_time: timestamp ... 109 more fields]
at org.apache.spark.sql.catalyst.expressions.Literal$.apply(literals.scala:78)
at org.apache.spark.sql.catalyst.expressions.Literal$.$anonfun$create$2(literals.scala:164)
at scala.util.Failure.getOrElse(Try.scala:222)
at org.apache.spark.sql.catalyst.expressions.Literal$.create(literals.scala:164)
at org.apache.spark.sql.functions$.typedLit(functions.scala:127)
at org.apache.spark.sql.functions$.lit(functions.scala:110)
at org.apache.spark.sql.functions$.when(functions.scala:1341)
at org.apache.spark.sql.functions.when(functions.scala)
at factory.Arret_Alert.check(Arret_Alert.java:44)

Any ideas ?

Thank you

答案1

得分: 0

以下是您要翻译的内容:

当您编写的条件不正确时,请查看以下 Java 文档中的 when 部分-

 *   // Java:
   *   people.select(when(col("gender").equalTo("male"), 0)
   *     .when(col("gender").equalTo("female"), 1)
   *     .otherwise(2))
   * }}}
   *
   * @group normal_funcs
   * @since 1.4.0
   */
  def when(condition: Column, value: Any): Column = withExpr {

您提到的 condition 列(when 的第一个参数)是正确的 -

df1.col("dateTracking_hour_minute")
                          .between(df.col("heureDebut"), df.col("heureFin"))

但第二个参数是数据集类型,这是不正确的。支持的字面量类型为 -

 def apply(v: Any): Literal = v match {
    case i: Int => Literal(i, IntegerType)
    case l: Long => Literal(l, LongType)
    case d: Double => Literal(d, DoubleType)
    case f: Float => Literal(f, FloatType)
    case b: Byte => Literal(b, ByteType)
    case s: Short => Literal(s, ShortType)
    case s: String => Literal(UTF8String.fromString(s), StringType)
    case c: Char => Literal(UTF8String.fromString(c.toString), StringType)
    case b: Boolean => Literal(b, BooleanType)
    case d: BigDecimal => Literal(Decimal(d), DecimalType.fromBigDecimal(d))
    case d: JavaBigDecimal =>
      Literal(Decimal(d), DecimalType(Math.max(d.precision, d.scale), d.scale()))
    case d: Decimal => Literal(d, DecimalType(Math.max(d.precision, d.scale), d.scale))
    case t: Timestamp => Literal(DateTimeUtils.fromJavaTimestamp(t), TimestampType)
    case d: Date => Literal(DateTimeUtils.fromJavaDate(d), DateType)
    case a: Array[Byte] => Literal(a, BinaryType)
    case a: Array[_] =>
      val elementType = componentTypeToDataType(a.getClass.getComponentType())
      val dataType = ArrayType(elementType)
      val convert = CatalystTypeConverters.createToCatalystConverter(dataType)
      Literal(convert(a), dataType)
    case i: CalendarInterval => Literal(i, CalendarIntervalType)
    case null => Literal(null, NullType)
    case v: Literal => v
    case _ =>
      throw new RuntimeException("Unsupported literal type " + v.getClass + " " + v)
  }

参考- spark GitHub 仓库

请更改代码中的这部分内容 -

dfjoin.filter(col("acc_status").equalTo(0).and(col("acc_previous").equalTo(1)))
英文:

the when condition you have written is incorrect. Please check the below java doc for when-

 *   // Java:
   *   people.select(when(col(&quot;gender&quot;).equalTo(&quot;male&quot;), 0)
   *     .when(col(&quot;gender&quot;).equalTo(&quot;female&quot;), 1)
   *     .otherwise(2))
   * }}}
   *
   * @group normal_funcs
   * @since 1.4.0
   */
  def when(condition: Column, value: Any): Column = withExpr {

the condition column(argument1 to when) that you mentioned is correct -

df1.col(&quot;dateTracking_hour_minute&quot;)
                          .between(df.col(&quot;heureDebut&quot;),df.col(&quot;heureFin&quot;))

but the second argument IS of type dataset which is incorrect. The supported literal types are -

 def apply(v: Any): Literal = v match {
    case i: Int =&gt; Literal(i, IntegerType)
    case l: Long =&gt; Literal(l, LongType)
    case d: Double =&gt; Literal(d, DoubleType)
    case f: Float =&gt; Literal(f, FloatType)
    case b: Byte =&gt; Literal(b, ByteType)
    case s: Short =&gt; Literal(s, ShortType)
    case s: String =&gt; Literal(UTF8String.fromString(s), StringType)
    case c: Char =&gt; Literal(UTF8String.fromString(c.toString), StringType)
    case b: Boolean =&gt; Literal(b, BooleanType)
    case d: BigDecimal =&gt; Literal(Decimal(d), DecimalType.fromBigDecimal(d))
    case d: JavaBigDecimal =&gt;
      Literal(Decimal(d), DecimalType(Math.max(d.precision, d.scale), d.scale()))
    case d: Decimal =&gt; Literal(d, DecimalType(Math.max(d.precision, d.scale), d.scale))
    case t: Timestamp =&gt; Literal(DateTimeUtils.fromJavaTimestamp(t), TimestampType)
    case d: Date =&gt; Literal(DateTimeUtils.fromJavaDate(d), DateType)
    case a: Array[Byte] =&gt; Literal(a, BinaryType)
    case a: Array[_] =&gt;
      val elementType = componentTypeToDataType(a.getClass.getComponentType())
      val dataType = ArrayType(elementType)
      val convert = CatalystTypeConverters.createToCatalystConverter(dataType)
      Literal(convert(a), dataType)
    case i: CalendarInterval =&gt; Literal(i, CalendarIntervalType)
    case null =&gt; Literal(null, NullType)
    case v: Literal =&gt; v
    case _ =&gt;
      throw new RuntimeException(&quot;Unsupported literal type &quot; + v.getClass + &quot; &quot; + v)
  }

ref- spark github repo

Please change this part of your code-

dfjoin.filter(col(&quot;acc_status&quot;).equalTo(0).and(col(&quot;acc_previous&quot;).equalTo(1)))

huangapple
  • 本文由 发表于 2020年6月29日 16:21:10
  • 转载请务必保留本文链接:https://go.coder-hub.com/62633946.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定