英文:
Call Go functions from C
问题
我正在尝试创建一个用Go语言编写的静态对象,与C程序(比如内核模块或其他)进行接口交互。
我已经找到了关于如何从Go调用C函数的文档,但是关于如何反过来的资料并不多。我找到的是这是可能的,但是比较复杂。
以下是我找到的资料:
有没有人有相关经验?简而言之,我正在尝试创建一个完全用Go语言编写的PAM模块。
英文:
I am trying to create a static object written in Go to interface with a C program (say, a kernel module or something).
I have found documentation on calling C functions from Go, but I haven't found much on how to go the other way. What I've found is that it's possible, but complicated.
Here is what I found:
Blog post about callbacks between C and Go
Does anyone have experience with this? In short, I'm trying to create a PAM module written entirely in Go.
答案1
得分: 139
你可以从C中调用Go代码。虽然这是一个令人困惑的命题。
这个过程在你提供的博客文章中有详细说明。但我可以理解这并不是很有帮助。下面是一个简短的代码片段,没有任何不必要的部分,应该能让事情更清晰一些。
package foo
// extern int goCallbackHandler(int, int);
//
// static int doAdd(int a, int b) {
// return goCallbackHandler(a, b);
// }
import "C"
//export goCallbackHandler
func goCallbackHandler(a, b C.int) C.int {
return a + b
}
// 这是一个公共函数,可以从包外部调用。
// 它将参数转发给C.doAdd(),然后C.doAdd()再转发给goCallbackHandler()。
// 这个函数执行加法并返回结果。
func MyAdd(a, b int) int {
return int(C.doAdd(C.int(a), C.int(b)))
}
所有调用的顺序如下:
foo.MyAdd(a, b) ->
C.doAdd(a, b) ->
C.goCallbackHandler(a, b) ->
foo.goCallbackHandler(a, b)
要记住的关键是,回调函数必须在Go端使用//export
注释标记,并在C端使用extern
标记。这意味着您希望使用的任何回调函数都必须在您的包内定义。
为了允许包的用户提供自定义的回调函数,我们使用与上面完全相同的方法,但我们将用户的自定义处理程序(只是一个普通的Go函数)作为参数传递到C端作为void*
。然后在我们的包中的回调处理程序中接收并调用它。
让我们使用一个我目前正在使用的更高级的示例。在这种情况下,我们有一个执行相当重要任务的C函数:它从USB设备读取文件列表。这可能需要一些时间,所以我们希望在进度时通知我们的应用程序。我们可以通过传递一个我们在程序中定义的函数指针来实现这一点。每当它被调用时,它只是向用户显示一些进度信息。由于它具有已知的签名,我们可以为它分配自己的类型:
type ProgressHandler func(current, total uint64, userdata interface{}) int
这个处理程序接受一些进度信息(当前接收到的文件数量和总文件数量),以及一个可以保存用户需要的任何内容的interface{}
值。
现在我们需要编写C和Go的代码来允许我们使用这个处理程序。幸运的是,我希望从库中调用的C函数允许我们传入一个类型为void*
的userdata结构体。这意味着它可以保存我们想要的任何内容,不需要任何问题,并且我们将按原样将其返回到Go世界中。为了使所有这些工作,我们不直接从Go中调用库函数,而是为它创建一个C包装器,我们将其命名为goGetFiles()
。正是这个包装器实际上将我们的Go回调与C库一起提供,以及一个userdata对象。
package foo
// #include <somelib.h>
// extern int goProgressCB(uint64_t current, uint64_t total, void* userdata);
//
// static int goGetFiles(some_t* handle, void* userdata) {
// return somelib_get_files(handle, goProgressCB, userdata);
// }
import "C"
import "unsafe"
请注意,goGetFiles()
函数不接受任何回调函数的函数指针作为参数。相反,我们的用户提供的回调被打包在一个自定义结构中,该结构包含处理程序和用户自己的userdata值。我们将其作为userdata参数传递给goGetFiles()
。
// 这定义了用户的进度处理程序的签名
type ProgressHandler func(current, total uint64, userdata interface{}) int
// 这是一个内部类型,它将打包用户的回调函数和userdata。
// 实际上,我们将发送给C代码的是这个类型的实例。
type progressRequest struct {
f ProgressHandler // 用户的函数指针
d interface{} // 用户的userdata
}
//export goProgressCB
func goProgressCB(current, total C.uint64_t, userdata unsafe.Pointer) C.int {
// 这是我们的昂贵的C.somelib_get_files()函数在C世界中调用的函数。
// userdata值包含*progressRequest的实例,我们解包它并使用它的值调用用户提供的实际函数。
req := (*progressRequest)(userdata)
// 使用我们的参数和用户自己的userdata值调用req.f。
return C.int(req.f(uint64(current), uint64(total), req.d))
}
// 这是我们的公共函数,由用户调用,
// 它接受一个我们的C库需要的句柄、一个函数指针和可选的用户定义的数据结构,无论它是什么。
func GetFiles(h *Handle, pf ProgressFunc, userdata interface{}) int {
// 我们不直接调用外部C库,而是调用我们的C包装器。
// 我们将句柄和progressRequest的实例传递给它。
req := unsafe.Pointer(&progressRequest{pf, userdata})
return int(C.goGetFiles((*C.some_t)(h), req))
}
这就是我们的C绑定。用户的代码现在非常简单:
package main
import (
"foo"
"fmt"
)
func main() {
handle := SomeInitStuff()
// 我们调用GetFiles。将进度处理程序和一些任意的userdata传递给它(也可以是nil)。
ret := foo.GetFiles(handle, myProgress, "Callbacks rock!")
....
}
// 这是我们的进度处理程序。做一些有用的事情,比如显示进度百分比。
func myProgress(current, total uint64, userdata interface{}) int {
fc := float64(current)
ft := float64(total) * 0.01
// 打印我们的进度。
// 例如:500 / 1000 (50.00%)
// 为了保险起见,我们在前面加上我们提供的userdata值,即"Callbacks rock!"。
fmt.Printf("%s: %d / %d (%3.2f%%)\n", userdata.(string), current, total, fc/ft)
return 0
}
所有这些看起来比实际复杂得多。与我们之前的示例相比,调用顺序没有改变,但是我们在链的末尾多了两个额外的调用:
顺序如下:
foo.GetFiles(...) ->
C.goGetFiles(...) ->
C.somelib_get_files(...) ->
C.goProgressCB(...) ->
foo.goProgressCB(...) ->
main.myProgress(...)
英文:
You can call the Go code from C. It is a confusing proposition, though.
The process is outlined in the blog post you linked to. But I can see how that isn't very helpful. Here is a short snippet without any unnecessary bits. It should make things a little clearer.
package foo
// extern int goCallbackHandler(int, int);
//
// static int doAdd(int a, int b) {
// return goCallbackHandler(a, b);
// }
import "C"
//export goCallbackHandler
func goCallbackHandler(a, b C.int) C.int {
return a + b
}
// This is the public function, callable from outside this package.
// It forwards the parameters to C.doAdd(), which in turn forwards
// them back to goCallbackHandler(). This one performs the addition
// and yields the result.
func MyAdd(a, b int) int {
return int( C.doAdd( C.int(a), C.int(b)) )
}
The order in which everything is called is as follows:
foo.MyAdd(a, b) ->
C.doAdd(a, b) ->
C.goCallbackHandler(a, b) ->
foo.goCallbackHandler(a, b)
The key to remember here is that a callback function must be marked with the //export
comment on the Go side and as extern
on the C side. This means that any callback you wish to use, must be defined inside your package.
In order to allow a user of your package to supply a custom callback function, we use the exact same approach as above, but we supply the user's custom handler (which is just a regular Go function) as a parameter that is passed onto the C side as void*
. It is then received by the callbackhandler in our package and called.
Let's use a more advanced example I am currently working with. In this case, we have a C function that performs a pretty heavy task: It reads a list of files from a USB device. This can take a while, so we want our app to be notified of its progress. We can do this by passing in a function pointer that we defined in our program. It simply displays some progress info to the user whenever it gets called. Since it has a well known signature, we can assign it its own type:
type ProgressHandler func(current, total uint64, userdata interface{}) int
This handler takes some progress info (current number of files received and total number of files) along with an interface{} value which can hold anything the user needs it to hold.
Now we need to write the C and Go plumbing to allow us to use this handler. Luckily the C function I wish to call from the library allows us to pass in a userdata struct of type void*
. This means it can hold whatever we want it to hold, no questions asked and we will get it back into the Go world as-is. To make all this work, we do not call the library function from Go directly, but we create a C wrapper for it which we will name goGetFiles()
. It is this wrapper that actually supplies our Go callback to the C library, along with a userdata object.
package foo
// #include <somelib.h>
// extern int goProgressCB(uint64_t current, uint64_t total, void* userdata);
//
// static int goGetFiles(some_t* handle, void* userdata) {
// return somelib_get_files(handle, goProgressCB, userdata);
// }
import "C"
import "unsafe"
Note that the goGetFiles()
function does not take any function pointers for callbacks as parameters. Instead, the callback that our user has supplied is packed in a custom struct that holds both that handler and the user's own userdata value. We pass this into goGetFiles()
as the userdata parameter.
// This defines the signature of our user's progress handler,
type ProgressHandler func(current, total uint64, userdata interface{}) int
// This is an internal type which will pack the users callback function and userdata.
// It is an instance of this type that we will actually be sending to the C code.
type progressRequest struct {
f ProgressHandler // The user's function pointer
d interface{} // The user's userdata.
}
//export goProgressCB
func goProgressCB(current, total C.uint64_t, userdata unsafe.Pointer) C.int {
// This is the function called from the C world by our expensive
// C.somelib_get_files() function. The userdata value contains an instance
// of *progressRequest, We unpack it and use it's values to call the
// actual function that our user supplied.
req := (*progressRequest)(userdata)
// Call req.f with our parameters and the user's own userdata value.
return C.int( req.f( uint64(current), uint64(total), req.d ) )
}
// This is our public function, which is called by the user and
// takes a handle to something our C lib needs, a function pointer
// and optionally some user defined data structure. Whatever it may be.
func GetFiles(h *Handle, pf ProgressFunc, userdata interface{}) int {
// Instead of calling the external C library directly, we call our C wrapper.
// We pass it the handle and an instance of progressRequest.
req := unsafe.Pointer(&progressequest{ pf, userdata })
return int(C.goGetFiles( (*C.some_t)(h), req ))
}
That's it for our C bindings. The user's code is now very straight forward:
package main
import (
"foo"
"fmt"
)
func main() {
handle := SomeInitStuff()
// We call GetFiles. Pass it our progress handler and some
// arbitrary userdata (could just as well be nil).
ret := foo.GetFiles( handle, myProgress, "Callbacks rock!" )
....
}
// This is our progress handler. Do something useful like display.
// progress percentage.
func myProgress(current, total uint64, userdata interface{}) int {
fc := float64(current)
ft := float64(total) * 0.01
// print how far along we are.
// eg: 500 / 1000 (50.00%)
// For good measure, prefix it with our userdata value, which
// we supplied as "Callbacks rock!".
fmt.Printf("%s: %d / %d (%3.2f%%)\n", userdata.(string), current, total, fc / ft)
return 0
}
This all looks a lot more complicated than it is. The call order has not changed as opposed to our previous example, but we get two extra calls at the end of the chain:
The order is as follows:
foo.GetFiles(....) ->
C.goGetFiles(...) ->
C.somelib_get_files(..) ->
C.goProgressCB(...) ->
foo.goProgressCB(...) ->
main.myProgress(...)
答案2
得分: 61
这是一个使用gccgo的不令人困惑的命题。在这里可以工作:
foo.go
package main
func Add(a, b int) int {
return a + b
}
bar.c
#include <stdio.h>
extern int go_add(int, int) __asm__ ("example.main.Add");
int main() {
int x = go_add(2, 3);
printf("Result: %d\n", x);
}
Makefile
all: main
main: foo.o bar.c
gcc foo.o bar.c -o main
foo.o: foo.go
gccgo -c foo.go -o foo.o -fgo-prefix=example
clean:
rm -f main *.o
英文:
It is not a confusing proposition if you use gccgo. This works here:
foo.go
package main
func Add(a, b int) int {
return a + b
}
bar.c
#include <stdio.h>
extern int go_add(int, int) __asm__ ("example.main.Add");
int main() {
int x = go_add(2, 3);
printf("Result: %d\n", x);
}
Makefile
all: main
main: foo.o bar.c
gcc foo.o bar.c -o main
foo.o: foo.go
gccgo -c foo.go -o foo.o -fgo-prefix=example
clean:
rm -f main *.o
答案3
得分: 17
答案随着Go 1.5的发布而改变了。
我之前提出的这个SO问题再次讨论了1.5版本增加的功能。
https://stackoverflow.com/questions/32215509/using-go-code-in-an-existing-c-project
英文:
The answer has changed with the release of Go 1.5
This SO question that I asked some time ago addresses the issue again in light of the 1.5 added capabilities
https://stackoverflow.com/questions/32215509/using-go-code-in-an-existing-c-project
答案4
得分: 3
据我所知,这是不可能的:
> 注意:如果你使用exports,就不能在导言部分定义任何C函数。
来源:https://github.com/golang/go/wiki/cgo
英文:
As far as I am concerned it isn't possible:
> Note: you can't define any C functions in preamble if you're using
> exports.
通过集体智慧和协作来改善编程学习和解决问题的方式。致力于成为全球开发者共同参与的知识库,让每个人都能够通过互相帮助和分享经验来进步。
评论