英文:
Will object detection/segmentation improve classification accuracy?
问题
如果我想进行分类任务,如果有边界框或像素级信息,分类得分会提高吗?
或者在分类方面,分类网络会胜过目标检测/分割网络吗?
英文:
if i want to do a classification task will the classification score improve if i have bounding box or pixel wise information?
or will a classification network outperform an object detection/Segmentation network in classification?
答案1
得分: 1
好问题。
答案如下:这取决于情况。
例如,假设您在10种狗上训练了YoloV3。然后,YoloV3的输出是一个带有相应类别的边界框。
然而,拥有两个神经网络,一个用于检测狗(目标检测),另一个用于分类(狗的种类)可能会得到更好的分数。
同样适用于语义/实例分割网络。
尽管没有固定的方法来确定哪种方法效果更好,但我个人倾向于认为第二步骤的流程可能会产生稍微更好的结果(这些观察是基于我的经验,因为我曾经在某个时候实施过这两种方法)。
英文:
Good question.
The answer is the following: it depends on the case.
For instance, say you train YoloV3 on 10 types of dogs. Then the output of YoloV3 is a bounding box with the corresponding class.
Having two neural networks however, one for detecting dogs(object detection) and the other one for classification(what type of dog) may perhaps yield a better score.
The same goes for semantic/instance segmentation network.
Although there is no recipe for saying which approach works better, I would personally incline to believe that the second step pipeline would yield slightly better results(there observations are based on my experience, since I have implemented both approaches at a point).
通过集体智慧和协作来改善编程学习和解决问题的方式。致力于成为全球开发者共同参与的知识库,让每个人都能够通过互相帮助和分享经验来进步。
评论