英文:
GPflow change point kernel issue with multiple dimensions
问题
I'm following the tutorial here for implementing a change point kernel in gpflow.
我正在按照此处的教程来实现在gpflow中使用变点核。
However, I have 3 inputs and 1 output and I would like the changepoint kernel to be on the first input dimension only and other standard kernels to be on the other two input dimensions.
然而,我有3个输入和1个输出,并且我希望变点核只作用在第一个输入维度上,而其他标准核作用在其他两个输入维度上。
I'm getting the following error:
我遇到了以下错误:
InvalidArgumentError: Incompatible shapes: [2000,3,1] vs. [3,2000,1] [Op:Mul] name: mul/
Below is a minimum working example. Could anyone please let me know where I'm going wrong?
以下是一个最小的工作示例。有人能告诉我我哪里出错了吗?
gpflow version 2.0.0.rc1
gpflow版本2.0.0.rc1
import pandas as pd
import gpflow
from gpflow.utilities import print_summary
df_all = pd.read_csv(
'https://raw.githubusercontent.com/ipan11/gp/master/dataset.csv')
# Training dataset in numpy format
X = df_all[['X1', 'X2', 'X3']].to_numpy()
Y1 = df_all['Y'].to_numpy().reshape(-1, 1)
# Changepoint kernel only on the first dimension and standard kernels for the other two dimensions
# 变点核只作用在第一个维度上,其他两个维度上使用标准核
base_k1 = gpflow.kernels.Matern32(lengthscale=0.2, active_dims=[0])
base_k2 = gpflow.kernels.Matern32(lengthscale=2., active_dims=[0])
k1 = gpflow.kernels.ChangePoints(
[base_k1, base_k2], [.4], steepness=5)
k2 = gpflow.kernels.Matern52(lengthscale=[1., 1.], active_dims=[1, 2])
k_all = k1 + k2
print_summary(k_all)
m1 = gpflow.models.GPR(data=(X, Y1), kernel=k_all, mean_function=None)
print_summary(m1)
opt = gpflow.optimizers.Scipy()
def objective_closure():
return -m1.log_marginal_likelihood()
opt_logs = opt.minimize(objective_closure, m1.trainable_variables,
options=dict(maxiter=100))
英文:
I'm following the tutorial here for implementing a change point kernel in gpflow.
However, I have 3 inputs and 1 output and I would like the changepoint kernel to be on the first input dimension only and other standard kernels to be on the other two input dimensions. I'm getting the following error :
InvalidArgumentError: Incompatible shapes: [2000,3,1] vs. [3,2000,1] [Op:Mul] name: mul/
Below is a minimum working example. Could anyone please let me know where I'm going wrong?
gpflow version 2.0.0.rc1
import pandas as pd
import gpflow
from gpflow.utilities import print_summary
df_all = pd.read_csv(
'https://raw.githubusercontent.com/ipan11/gp/master/dataset.csv')
# Training dataset in numpy format
X = df_all[['X1', 'X2', 'X3']].to_numpy()
Y1 = df_all['Y'].to_numpy().reshape(-1, 1)
# Changepoint kernel only on first dimension and standard kernels for the other two dimensions
base_k1 = gpflow.kernels.Matern32(lengthscale=0.2, active_dims=[0])
base_k2 = gpflow.kernels.Matern32(lengthscale=2., active_dims=[0])
k1 = gpflow.kernels.ChangePoints(
[base_k1, base_k2], [.4], steepness=5)
k2 = gpflow.kernels.Matern52(lengthscale=[1., 1.], active_dims=[1, 2])
k_all = k1+k2
print_summary(k_all)
m1 = gpflow.models.GPR(data=(X, Y1), kernel=k_all, mean_function=None)
print_summary(m1)
opt = gpflow.optimizers.Scipy()
def objective_closure():
return -m1.log_marginal_likelihood()
opt_logs = opt.minimize(objective_closure, m1.trainable_variables,
options=dict(maxiter=100))
答案1
得分: 1
正确的答案是将 active_dims=[0]
从 base_k*
内核移动到 ChangePoints()
内核中,
k1 = gpflow.kernels.ChangePoints([base_k1, base_k2], [0.4], steepness=5, active_dims=[0])
但是目前 GPflow 2 不支持这个,这是一个 bug。我已经在 GitHub 上开了一个问题,一旦修复了,我会更新这个答案(如果你有兴趣尝试修复这个 bug,欢迎提交拉取请求,我们随时欢迎帮助!)。
英文:
The correct answer would be to move the active_dims=[0]
from the base_k* kernels to the ChangePoints() kernel,
k1 = gpflow.kernels.ChangePoints([base_k1, base_k2], [0.4], steepness=5, active_dims=[0])
but this is currently not supported in GPflow 2, which is a bug. I've opened an issue on github, and will update this answer once it's fixed (if you feel up to having a go at fixing this bug, feel free to open a pull request, help always welcome!).
通过集体智慧和协作来改善编程学习和解决问题的方式。致力于成为全球开发者共同参与的知识库,让每个人都能够通过互相帮助和分享经验来进步。
评论