访问多维数组的每个元素,而不需要知道各个维度。

huangapple go评论99阅读模式
英文:

Access each element of a multidimensional array without knowing the individual dimensions

问题

import numpy as np
import random

myRand = np.random.rand(5, 6, 7)

这段代码适用于已知myRand具有3个维度的情况。如果我不知道呢?

mySum = 0.0
for i in range(myRand.shape[0]):
for j in range(myRand.shape[1]):
for k in range(myRand.shape[2]):
# 对myRand[i,j,k]执行某些操作

英文:

I have a multidimensional array but I won't know the number of dimensions or the size of each dimension. How can I generalize the code such that I can access each element of the array individually?

  1. import numpy as np
  2. import random
  3. myRand = np.random.rand(5, 6, 7)
  4. #print (myRand.shape[0])
  5. # This works great if I already know that myRand has 3 dimensions. What if I don't know that?
  6. mySum = 0.0
  7. for i in range(myRand.shape[0]):
  8. for j in range(myRand.shape[1]):
  9. for k in range(myRand.shape[2]):
  10. # Do something with myRand[i,j,k]

答案1

得分: 1

如果您不需要在计算中保留每个维度内的索引,您可以只使用numpy.nditer

  1. a = np.arange(8).reshape((2, 2, 2))
  2. a
  3. array([[[0, 1],
  4. [2, 3]],
  5. [[4, 5],
  6. [6, 7]]])
  7. for i in np.nditer(a):
  8. print(i)
  9. # 输出结果:
  10. 0
  11. 1
  12. 2
  13. 3
  14. 4
  15. 5
  16. 6
  17. 7

您通常不应该需要像这样使用for循环迭代数组。通常使用numpy的方法来执行您要进行的计算会更好。

英文:

If you do not need to retain the indices within each of the dimensions for calculation, you can just use numpy.nditer

  1. >>> a = np.arange(8).reshape((2, 2, 2))
  2. >>> a
  3. array([[[0, 1],
  4. [2, 3]],
  5. [[4, 5],
  6. [6, 7]]])
  7. >>> for i in np.nditer(a):
  8. ... print(i)
  9. ...
  10. 0
  11. 1
  12. 2
  13. 3
  14. 4
  15. 5
  16. 6
  17. 7

> You shouldn't really need to iterate over the array using a for-loop like this. There is usually a better way to perform whatever computation you are doing using numpy methods

答案2

得分: 1

你可以使用[itertools][1]来完成这个任务。

以下是生成索引的代码,通过这些索引你可以访问数组中的元素:

  1. import numpy as np
  2. import itertools
  3. v1 = np.random.randint(5, size=2)
  4. v2 = np.random.randint(5, size=(2, 4))
  5. v3 = np.random.randint(5, size=(2, 3, 2))
  6. # v1
  7. args1 = [list(range(e)) for e in list(v1.shape)]
  8. print(v1)
  9. for combination in itertools.product(*args1):
  10. print(v1[combination])
  11. # v2
  12. args2 = [list(range(e)) for e in list(v2.shape)]
  13. print(v2)
  14. for combination in itertools.product(*args2):
  15. print(v2[combination])
  16. # v3
  17. args3 = [list(range(e)) for e in list(v3.shape)]
  18. print(v3)
  19. for combination in itertools.product(*args3):
  20. print(v3[combination])
  21. 在不同大小的简单数组上进行了测试运行正常
  22. [1]: https://docs.python.org/2/library/itertools.html
  23. <details>
  24. <summary>英文:</summary>
  25. You could use [`itertools`][1] to do so.
  26. the following piece of code will generate the indices which you will be able to access the array while obtaining them:
  27. import numpy as np
  28. import itertools
  29. v1 = np.random.randint(5, size=2)
  30. v2 = np.random.randint(5, size=(2, 4))
  31. v3 = np.random.randint(5, size=(2, 3, 2))
  32. # v1
  33. args1 = [list(range(e)) for e in list(v1.shape)]
  34. print(v1)
  35. for combination in itertools.product(*args1):
  36. print(v1[combination])
  37. # v2
  38. args2 = [list(range(e)) for e in list(v2.shape)]
  39. print(v2)
  40. for combination in itertools.product(*args2):
  41. print(v2[combination])
  42. # v3
  43. args3 = [list(range(e)) for e in list(v3.shape)]
  44. print(v3)
  45. for combination in itertools.product(*args3):
  46. print(v3[combination])
  47. Tested it on a simple arrays with different sizes and it works fine.
  48. [1]: https://docs.python.org/2/library/itertools.html
  49. </details>

huangapple
  • 本文由 发表于 2020年1月6日 22:09:07
  • 转载请务必保留本文链接:https://go.coder-hub.com/59613577.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定