对数收益(几乎)与百分比变化相同

huangapple go评论66阅读模式
英文:

log returns (almost) same as percent change

问题

我有这个函数来计算收益的对数。它按预期工作。

def log_returns(prices):
    return np.log(prices / prices.shift(1))

data.apply(lambda x: log_returns(x))

返回的值与pct_change方法非常接近。这是预期的吗?

data.pct_change()
英文:

I have this function to calculate log of returns. It works as expected.

def log_returns(prices):
    return np.log(prices / prices.shift(1))

data.apply(lambda x: log_returns(x))

The values returned are very close to pct_change method. Is this expected?

> data.pct_change()

答案1

得分: 2

是的,这确实不太奇怪。对于一个小的y,有y ≈ log (1+y)。更多信息请参见Mathematics Exchange 帖子

百分比变化的计算方式是x<sub>i+1</sub>/x<sub>i</sub>-1,而您计算log(x<sub>i+1</sub>/x<sub>i</sub>)。因此,如果我们用y替代y = x<sub>i+1</sub>/x<sub>i</sub>-1,我们会看到近似值出现。

英文:

Yes, this is indeed not that strange. For a small y, it holds that y &approx; log (1+y). See for more information this Mathematics Exchange post.

A percentage change is calculated as x<sub>i+1</sub>/x<sub>i</sub>-1, whereas you calculate log(x<sub>i+1</sub>/x<sub>i</sub>). If we thus substitute y for y = x<sub>i+1</sub>/x<sub>i</sub>-1, we see the approximation pop up.

答案2

得分: 2

这是代码的一部分,我将为您翻译其中的非代码部分:

"It is, for small variations in the natural log are almost equal to percentage change, that's not a code issue."

这句话的意思是:对于自然对数的微小变化,几乎等于百分比变化,这不是代码问题。

"Since :"

这是一个过渡词,表示接下来将提供一个解释或原因。

"log(A/B) = log(A) - log(B)"

这是一个数学公式,表示log(A/B)等于log(A)减去log(B)。

"and in your case, A is equal to some small change e of B."

在您的情况下,A等于B的一些小变化e

"log(A/B) = log(A) - log(B) = log(B(1+e)) - log(B)"

"log(A/B) = log(B) + log((1+e)) - log(B) = log(1+e)"

对于小值的e,这意味着log在1附近是一个很好的近似。

"log(1+e) ≈ e"

这表示对于小的e值,log(1+e)近似等于e

"See for yourself with this code :"

您可以使用以下代码自行查看:

"import pandas as pd
import numpy as np

small = np.linspace(0.01, 0.1, 100)

df = pd.DataFrame({"vals" : small})"

这部分代码用于创建一个包含数值的DataFrame。

"df["changes"] = df["vals"].pct_change()"

这部分代码计算了数值列的百分比变化。

"df["log div"] = np.log(df["vals"]/df["vals"].shift())"

这部分代码计算了数值列的自然对数除法。

"diff_log = np.log(df["vals"]) - np.log(df["vals"].shift())"

这部分代码计算了数值列的自然对数差异。

"diff_log = diff_log[~np.isnan(diff_log)]"

这一行代码删除了包含NaN值的差异。

"log_div = df["log div"].dropna().values"

这部分代码获取了自然对数除法的数值。

"assert(np.allclose(log_div, diff_log))"

这部分代码用于断言自然对数除法和差异是否非常接近。

"and df.head(10):"

这是一个指示,接下来将展示DataFrame的前10行数据。

希望这些翻译对您有所帮助。如果您需要更多解释或有其他问题,请随时提问。

英文:

It is, for small variations in the natural log are almost equal to percentage change, that's not a code issue.

Since :

log(A/B) = log(A) - log(B)

and in your case, A is equal to some small change e of B.

log(A/B) = log(A) - log(B) =  log(B(1+e)) - log(B)
log(A/B) = log(B) + log((1+e)) - log(B) = log(1+e)

For small values of e, meaning that the log is a good approx. around 1

log(1+e) ≈ e

For a more mathy explanation, see this SO post.

See for yourself with this code :

import pandas as pd
import numpy as np

small = np.linspace(0.01, 0.1, 100)

df = pd.DataFrame({&quot;vals&quot; : small})

df[&quot;changes&quot;] = df[&quot;vals&quot;].pct_change()

df[&quot;log div&quot;] = np.log(df[&quot;vals&quot;]/df[&quot;vals&quot;].shift())

diff_log = np.log(df[&quot;vals&quot;]) - np.log(df[&quot;vals&quot;].shift())

df[&quot;diff log&quot;] = diff_log

diff_log = diff_log[~np.isnan(diff_log)]

log_div  = df[&quot;log div&quot;].dropna().values

assert(np.allclose(log_div, diff_log))

and df.head(10):

     values   changes   log div  diff log                                                                               
0  0.010000       NaN       NaN       NaN                                                                               
1  0.010909  0.090909  0.087011  0.087011                                                                               
2  0.011818  0.083333  0.080043  0.080043                                                                               
3  0.012727  0.076923  0.074108  0.074108                                                                               
4  0.013636  0.071429  0.068993  0.068993                                                                               
5  0.014545  0.066667  0.064539  0.064539                                                                               
6  0.015455  0.062500  0.060625  0.060625                                                                               
7  0.016364  0.058824  0.057158  0.057158                                                                                  
8  0.017273  0.055556  0.054067  0.054067                                                                                    
9  0.018182  0.052632  0.051293  0.051293 

huangapple
  • 本文由 发表于 2020年1月6日 19:23:12
  • 转载请务必保留本文链接:https://go.coder-hub.com/59611242.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定