为什么pandas中的`mean`在处理Series时有效,但在处理GroupBy对象时无效?

huangapple go评论147阅读模式
英文:

Why does pandas mean, on datetime, work on a series but not on a groupby object

问题

我正在尝试按组计算日期的均值。

import pandas as pd

df = pd.DataFrame({'Id': ['A', 'A', 'B', 'B'],
                   'Date': [pd.datetime(2000, 12, 31), pd.datetime(2002, 12, 31),
                            pd.datetime(2000, 6, 30), pd.datetime(2002, 6, 30)]})

这一直是一个让人头疼的问题,所以我很高兴地了解到这似乎在pandas 0.25中已经修复了 https://stackoverflow.com/questions/27907902/datetime-objects-with-pandas-mean-function

df['Date'].mean()
Out[45]: Timestamp('2001-09-30 00:00:00') # 这个可以工作

然而,使用groupby无法做到这一点。

df.groupby('Id')['Date'].mean()

Traceback (most recent call last):

  File "<ipython-input-46-5fae5ffac6c6>", line 1, in <module>
    df.groupby('Id')['Date'].mean()

  File "C:\Users\xxx\AppData\Local\Continuum\anaconda3\lib\site-packages\pandas\core\groupby\groupby.py", line 1205, in mean
    "mean", alt=lambda x, axis: Series(x).mean(**kwargs), **kwargs

  File "C:\Users\xxx\AppData\Local\Continuum\anaconda3\lib\site-packages\pandas\core\groupby\groupby.py", line 888, in _cython_agg_general
    raise DataError("No numeric types to aggregate")

DataError: No numeric types to aggregate

发生了什么情况是否有一个简单的解决方法

<details>
<summary>英文:</summary>

I am trying to take the mean of dates in by groups.

    import pandas as pd

    df = pd.DataFrame({&#39;Id&#39;: [&#39;A&#39;, &#39;A&#39;, &#39;B&#39;, &#39;B&#39;],
                       &#39;Date&#39;: [pd.datetime(2000, 12, 31), pd.datetime(2002, 12, 31),
                                pd.datetime(2000, 6, 30), pd.datetime(2002, 6, 30)]})

This has always been a pain to do, so I was pleased to learn that this had apparntly been fixed in pandas 0.25 https://stackoverflow.com/questions/27907902/datetime-objects-with-pandas-mean-function.

    df[&#39;Date&#39;].mean()
    Out[45]: Timestamp(&#39;2001-09-30 00:00:00&#39;) # This works

However, this cant be done using &#180;groupby&#180;

    df.groupby(&#39;Id&#39;)[&#39;Date&#39;].mean()

    Traceback (most recent call last):

      File &quot;&lt;ipython-input-46-5fae5ffac6c6&gt;&quot;, line 1, in &lt;module&gt;
        df.groupby(&#39;Id&#39;)[&#39;Date&#39;].mean()

      File &quot;C:\Users\xxx\AppData\Local\Continuum\anaconda3\lib\site-packages\pandas\core\groupby\groupby.py&quot;, line 1205, in mean
    &quot;mean&quot;, alt=lambda x, axis: Series(x).mean(**kwargs), **kwargs

      File &quot;C:\Users\xxx\AppData\Local\Continuum\anaconda3\lib\site-packages\pandas\core\groupby\groupby.py&quot;, line 888, in _cython_agg_general
    raise DataError(&quot;No numeric types to aggregate&quot;)

    DataError: No numeric types to aggregate

What is going on here, and is there an easy workaround?

</details>


# 答案1
**得分**: 2

使用lambda函数与[`GroupBy.agg`](http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.core.groupby.GroupBy.agg.html)或[`GroupBy.apply`](http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.core.groupby.GroupBy.apply.html)

```python
print(df.groupby('Id')['Date'].agg(lambda x: x.mean()))
print(df.groupby('Id')['Date'].agg(pd.Series.mean))
print(df.groupby('Id')['Date'].apply(lambda x: x.mean()))
print(df.groupby('Id')['Date'].apply(pd.Series.mean))

Id
A   2001-12-31
B   2001-06-30
Name: Date, dtype: datetime64[ns]

区别在于如果有多个列:

df = pd.DataFrame({'Id': ['A', 'A', 'B', 'B'],
                   'Date': [pd.datetime(2000, 12, 31), pd.datetime(2002, 12, 31),
                            pd.datetime(2000, 6, 30), pd.datetime(2002, 6, 30)]})
df['Date1'] = df['Date']
print(df.groupby('Id').agg(lambda x: x.mean()))
         Date      Date1
Id                      
A  2001-12-31 2001-12-31
B  2001-06-30 2001-06-30
print(df.groupby('Id').agg(pd.Series.mean))
         Date      Date1
Id                      
A  2001-12-31 2001-12-31
B  2001-06-30 2001-06-30

print(df.groupby('Id').apply(lambda x: x.mean()))
Empty DataFrame
Columns: []
Index: []

print(df.groupby('Id').apply(pd.Series.mean))
Empty DataFrame
Columns: []
Index: []

为什么pandas中的datetime上的mean在Series上有效,但在groupby对象上无效?

一段时间以前,对于Series、Datetime的mean存在问题,可以查看这里,所以在pandas的一些未来版本中,这个问题可能已经解决。

英文:

Use lambda function with GroupBy.agg or GroupBy.apply:

print (df.groupby(&#39;Id&#39;)[&#39;Date&#39;].agg(lambda x: x.mean()))
print (df.groupby(&#39;Id&#39;)[&#39;Date&#39;].agg(pd.Series.mean))
print (df.groupby(&#39;Id&#39;)[&#39;Date&#39;].apply(lambda x: x.mean()))
print (df.groupby(&#39;Id&#39;)[&#39;Date&#39;].apply(pd.Series.mean))
Id
A   2001-12-31
B   2001-06-30
Name: Date, dtype: datetime64[ns]

Difference is if multiple columns:

df = pd.DataFrame({&#39;Id&#39;: [&#39;A&#39;, &#39;A&#39;, &#39;B&#39;, &#39;B&#39;],
&#39;Date&#39;: [pd.datetime(2000, 12, 31), pd.datetime(2002, 12, 31),
pd.datetime(2000, 6, 30), pd.datetime(2002, 6, 30)]})
df[&#39;Date1&#39;] = df[&#39;Date&#39;]
print (df.groupby(&#39;Id&#39;).agg(lambda x: x.mean()))
Date      Date1
Id                      
A  2001-12-31 2001-12-31
B  2001-06-30 2001-06-30
print (df.groupby(&#39;Id&#39;).agg(pd.Series.mean))
Date      Date1
Id                      
A  2001-12-31 2001-12-31
B  2001-06-30 2001-06-30
print (df.groupby(&#39;Id&#39;).apply(lambda x: x.mean()))
Empty DataFrame
Columns: []
Index: []
print (df.groupby(&#39;Id&#39;).apply(pd.Series.mean))
Empty DataFrame
Columns: []
Index: []

>Why does pandas mean, on datetime, work on a series but not on a groupby object

Some time ago it was problem with mean for Series, Datetimes, check this, so possible in some next versions of pandas this should working well.

huangapple
  • 本文由 发表于 2020年1月6日 19:05:37
  • 转载请务必保留本文链接:https://go.coder-hub.com/59610966.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定