Altair具有可变宽度的柱状图?

huangapple go评论103阅读模式
英文:

Altair bar chart with bars of variable width?

问题

I'm trying to use Altair in Python to make a bar chart where the bars have varying width depending on the data in a column of the source dataframe. The ultimate goal is to get a chart like this one.

The height of the bars corresponds to a marginal-cost of each energy-technology (given as a column in the source dataframe). The bar width corresponds to the capacity of each energy-technology (also given as columns in the source dataframe). Colors are ordinal data also from the source dataframe. The bars are sorted in increasing order of marginal cost. (A plot like this is called a "generation stack" in the energy industry). This is easy to achieve in matplotlib like shown in the code below:

import matplotlib.pyplot as plt 

# Make fake dataset
height = [3, 12, 5, 18, 45]
bars = ('A', 'B', 'C', 'D', 'E')

# Choose the width of each bar and their positions
width = [0.1, 0.2, 3, 1.5, 0.3]
y_pos = [0, 0.3, 2, 4.5, 5.5]

# Make the plot
plt.bar(y_pos, height, width=width)
plt.xticks(y_pos, bars)
plt.show()

But is there a way to do this with Altair? I would want to do this with Altair so I can still get the other great features of Altair like a tooltip, selectors/bindings as I have lots of other data I want to show alongside the bar-chart.

First 20 rows of my source data looks like this.

英文:

I'm trying to use Altair in Python to make a bar chart where the bars have varying width depending on the data in a column of the source dataframe. The ultimate goal is to get a chart like this one:

Altair具有可变宽度的柱状图?

The height of the bars corresponds to a marginal-cost of each energy-technology (given as a column in the source dataframe). The bar width corresponds to the capacity of each energy-technology (also given as a columns in the source dataframe). Colors are ordinal data also from the source dataframe. The bars are sorted in increasing order of marginal cost. (A plot like this is called a "generation stack" in the energy industry). This is easy to achieve in matplotlib like shown in the code below:

import matplotlib.pyplot as plt 

# Make fake dataset
height = [3, 12, 5, 18, 45]
bars = ('A', 'B', 'C', 'D', 'E')

# Choose the width of each bar and their positions
width = [0.1,0.2,3,1.5,0.3]
y_pos = [0,0.3,2,4.5,5.5]

# Make the plot
plt.bar(y_pos, height, width=width)
plt.xticks(y_pos, bars)
plt.show()

(code from https://python-graph-gallery.com/5-control-width-and-space-in-barplots/)

But is there a way to do this with Altair? I would want to do this with Altair so I can still get the other great features of Altair like a tooltip, selectors/bindings as I have lots of other data I want to show alongside the bar-chart.

First 20 rows of my source data looks like this:

Altair具有可变宽度的柱状图?

(does not match exactly the chart shown above).

答案1

得分: 8

以下是您要翻译的代码部分:

在Altair中,要实现这一点的方法是使用rect标记并明确构建您的条形图。以下是一个模仿您的数据的示例:

import altair as alt
import pandas as pd
import numpy as np

np.random.seed(0)

df = pd.DataFrame({
    'MarginalCost': 100 * np.random.rand(30),
    'Capacity': 10 * np.random.rand(30),
    'Technology': np.random.choice(['SOLAR', 'THERMAL', 'WIND', 'GAS'], 30)
})

df = df.sort_values('MarginalCost')
df['x1'] = df['Capacity'].cumsum()
df['x0'] = df['x1'].shift(fill_value=0)

alt.Chart(df).mark_rect().encode(
    x=alt.X('x0:Q', title='Capacity'),
    x2='x1',
    y=alt.Y('MarginalCost:Q', title='Marginal Cost'),
    color='Technology:N',
    tooltip=["Technology", "Capacity", "MarginalCost"]
)

要在不对数据进行预处理的情况下获得相同的结果,您可以使用Altair的转换语法:

df = pd.DataFrame({
    'MarginalCost': 100 * np.random.rand(30),
    'Capacity': 10 * np.random.rand(30),
    'Technology': np.random.choice(['SOLAR', 'THERMAL', 'WIND', 'GAS'], 30)
})

alt.Chart(df).transform_window(
    x1='sum(Capacity)',
    sort=[alt.SortField('MarginalCost')]
).transform_calculate(
    x0='datum.x1 - datum.Capacity'
).mark_rect().encode(
    x=alt.X('x0:Q', title='Capacity'),
    x2='x1',
    y=alt.Y('MarginalCost:Q', title='Marginal Cost'),
    color='Technology:N',
    tooltip=["Technology", "Capacity", "MarginalCost"]
)

Altair具有可变宽度的柱状图?

英文:

In Altair, the way to do this would be to use the rect mark and construct your bars explicitly. Here is an example that mimics your data:

import altair as alt
import pandas as pd
import numpy as np

np.random.seed(0)

df = pd.DataFrame({
    'MarginalCost': 100 * np.random.rand(30),
    'Capacity': 10 * np.random.rand(30),
    'Technology': np.random.choice(['SOLAR', 'THERMAL', 'WIND', 'GAS'], 30)
})

df = df.sort_values('MarginalCost')
df['x1'] = df['Capacity'].cumsum()
df['x0'] = df['x1'].shift(fill_value=0)

alt.Chart(df).mark_rect().encode(
    x=alt.X('x0:Q', title='Capacity'),
    x2='x1',
    y=alt.Y('MarginalCost:Q', title='Marginal Cost'),
    color='Technology:N',
    tooltip=["Technology", "Capacity", "MarginalCost"]
)

Altair具有可变宽度的柱状图?

To get the same result without preprocessing of the data, you can use Altair's transform syntax:

df = pd.DataFrame({
    'MarginalCost': 100 * np.random.rand(30),
    'Capacity': 10 * np.random.rand(30),
    'Technology': np.random.choice(['SOLAR', 'THERMAL', 'WIND', 'GAS'], 30)
})

alt.Chart(df).transform_window(
    x1='sum(Capacity)',
    sort=[alt.SortField('MarginalCost')]
).transform_calculate(
    x0='datum.x1 - datum.Capacity'
).mark_rect().encode(
    x=alt.X('x0:Q', title='Capacity'),
    x2='x1',
    y=alt.Y('MarginalCost:Q', title='Marginal Cost'),
    color='Technology:N',
    tooltip=["Technology", "Capacity", "MarginalCost"]
)

huangapple
  • 本文由 发表于 2020年1月6日 16:01:57
  • 转载请务必保留本文链接:https://go.coder-hub.com/59608560.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定