英文:
Merge 2 csv files rows
问题
我正在尝试预测一场体育比赛的获胜者,我有两个CSV文件。一个包含当前年份的统计数据,另一个包含去年的统计数据。
我想要合并它们,但只使用第一个文件中的列:
所以如果第一个表有列
['Away', 'Home', 'Result']
而第二个表有['Away', 'Home', 'Match-Rating']
结果将包含['Away', 'Home', 'Result'],而'Result'列将包含0或其他默认值(如果在第二个CSV中找不到)。
我尝试了:
data = panda.read_csv('PremierLeagueDataSet/19-20.csv')
display(data.head())
data2 = panda.read_csv('PremierLeagueDataSet/18-19.csv')
data.append(data2)
但是它会给我一个警告,并且不执行所需的连接。
未来警告:排序,因为非连接轴未对齐。pandas的未来版本将默认不进行排序。
英文:
So i'm trying to predict the winner of a sport game, and i have 2 CSV files. One with the current year statistics and the other with last years statistics.
I would like to merge them but only with the colums from the first file:
So that if the first table has columns
['Away','Home','Result']
and the second one has ['Away','Home','Match-Rating']
the result would contain ['Away','Home','Result'] and the 'Result' column would contain 0 or other default value if not found in second CSV.
I tried :
data = panda.read_csv('PremierLeagueDataSet/19-20.csv')
display(data.head())
data2= panda.read_csv('PremierLeagueDataSet/18-19.csv')
data.append(data2)
but gives me a warning and doesn't do the wanted concatenation
> FutureWarning: Sorting because non-concatenation axis is not aligned. A future version
of pandas will change to not sort by default.
答案1
得分: 2
为了阻止 data2.Match-Rating 的追加,调用 append 并传递包含要包括的列名的 data2:
data.append(data2[['Away', 'Home']], ignore_index=True, sort=False)\
.replace(np.nan, '')
正如你所看到的,我添加了 ignore_index=True 来避免重复的索引。我还添加了 sort=False 来避免关于未来版本计划更改的警告。
我还添加了 replace 来将 NaN 值更改为空字符串。
英文:
To block data2.Match-Rating from appending, invoke append passing
data2 with column names to be included:
data.append(data2[['Away', 'Home']], ignore_index=True, sort=False)\
.replace(np.nan, '')
As you can see, I added ignore_index=True to avoid repeating indices.
I added also sort=False to avoid a warning concerning planned changes
in future versions.
I added also replace to change NaN values into empty strings.
通过集体智慧和协作来改善编程学习和解决问题的方式。致力于成为全球开发者共同参与的知识库,让每个人都能够通过互相帮助和分享经验来进步。
评论