如何将输入传递给Keras中的2D卷积层?

huangapple go评论80阅读模式
英文:

How to pass input to 2D Conv in Keras?

问题

我已使用librosa将声音转换为频谱图。频谱图的形状是(257, 356),我已将其重塑为(257, 356, 1)。

我创建了一个模型:

from keras.models import Sequential
from keras.layers import Dense, Conv2D, Flatten
model = Sequential()
model.add(Conv2D(64, kernel_size=3, activation='relu', input_shape=A.shape))
model.add(Flatten())
model.add(Dense(1, activation='softmax'))

在拟合模型时,出现了以下错误:

model.fit(A, validation_data=(A2), epochs=3)

其中A2是另一个频谱图,其维度如下:

ValueError: 检查输入时出错预期conv2d_3_input具有4个维度但得到的数组形状为(257, 356, 1)

模型摘要:

_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
conv2d_24 (Conv2D)           (None, 255, 354, 64)      640       
_________________________________________________________________
conv2d_25 (Conv2D)           (None, 253, 352, 32)      18464     
_________________________________________________________________
flatten_11 (Flatten)         (None, 2849792)           0         
_________________________________________________________________
dense_11 (Dense)             (None, 10)                28497930  
=================================================================
Total params: 28,517,034
Trainable params: 28,517,034
Non-trainable params: 0

A[0]的形状是

A[0].shape = (356, 1)
英文:

I have converted voice to spectrogram using librosa. The shape of spectogram is (257, 356), which i have reshaped to (257, 356, 1).

I have created a model

from keras.models import Sequential
from keras.layers import Dense, Conv2D, Flatten
model = Sequential()
model.add(Conv2D(64, kernel_size=3, activation='relu', input_shape=A.shape))
model.add(Flatten())
model.add(Dense(1, activation='softmax'))

while fitting the model, following error is produced

model.fit(A,validation_data=(A2), epochs=3)

where A2 is another spectrogram with following dimensions

ValueError: Error when checking input: expected conv2d_3_input to have 4 dimensions, but got array with shape (257, 356, 1)

Model Summary

_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
conv2d_24 (Conv2D)           (None, 255, 354, 64)      640       
_________________________________________________________________
conv2d_25 (Conv2D)           (None, 253, 352, 32)      18464     
_________________________________________________________________
flatten_11 (Flatten)         (None, 2849792)           0         
_________________________________________________________________
dense_11 (Dense)             (None, 10)                28497930  
=================================================================
Total params: 28,517,034
Trainable params: 28,517,034
Non-trainable params: 0

And the shape of A[0] is

A[0].shape = (356, 1)

答案1

得分: 2

以下是我的工作代码:

from keras.models import Sequential
from keras.layers import Dense, Conv2D, Flatten
import numpy as np

A = np.zeros((1,257,356,1))     # 仅用于说明
A2 = np.zeros((1,1))     # 仅用于说明

model = Sequential()
model.add(Conv2D(64, kernel_size=(3,3), activation='relu', input_shape=A.shape[1:]))     # input_shape ==> (257,356,1)
model.add(Flatten())
model.add(Dense(1, activation='softmax'))

model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])

model.fit(A, A2, validation_data = (A, A2), epochs=3)

以下是3个时期的输出:

Train on 1 samples, validate on 1 samples
Epoch 1/3
1/1 [==============================] - 0s 250ms/step - loss: 0.0000e+00 - accuracy: 1.0000 - val_loss: 0.0000e+00 - val_accuracy: 1.0000
Epoch 2/3
1/1 [==============================] - 0s 141ms/step - loss: 0.0000e+00 - accuracy: 1.0000 - val_loss: 0.0000e+00 - val_accuracy: 1.0000
Epoch 3/3
1/1 [==============================] - 0s 156ms/step - loss: 0.0000e+00 - accuracy: 1.0000 - val_loss: 0.0000e+00 - val_accuracy: 1.0000
<keras.callbacks.callbacks.History at 0x1d508dbb708>
英文:

EDIT: Here's my working code:

from keras.models import Sequential
from keras.layers import Dense, Conv2D, Flatten
import numpy as np

A = np.zeros((1,257,356,1))     # Only for illustration
A2 = np.zeros((1,1))     # Only for illustration

model = Sequential()
model.add(Conv2D(64, kernel_size=(3,3), activation=&#39;relu&#39;, input_shape=A.shape[1:]))     # input_shape ==&gt; (257,356,1)
model.add(Flatten())
model.add(Dense(1, activation=&#39;softmax&#39;))

model.compile(loss=&#39;binary_crossentropy&#39;, optimizer=&#39;adam&#39;, metrics=[&#39;accuracy&#39;])

model.fit(A, A2, validation_data = (A, A2), epochs=3)

And here's the output for 3 epochs:

Train on 1 samples, validate on 1 samples
Epoch 1/3
1/1 [==============================] - 0s 250ms/step - loss: 0.0000e+00 - accuracy: 1.0000 - val_loss: 0.0000e+00 - val_accuracy: 1.0000
Epoch 2/3
1/1 [==============================] - 0s 141ms/step - loss: 0.0000e+00 - accuracy: 1.0000 - val_loss: 0.0000e+00 - val_accuracy: 1.0000
Epoch 3/3
1/1 [==============================] - 0s 156ms/step - loss: 0.0000e+00 - accuracy: 1.0000 - val_loss: 0.0000e+00 - val_accuracy: 1.0000

&lt;keras.callbacks.callbacks.History at 0x1d508dbb708&gt;

答案2

得分: 0

你的模型缺少批处理大小。

2D 卷积的输入形状为 (批处理大小, 空间维度1, 空间维度2, 通道数)

我不知道你的数据结构是怎样的,但看起来你没有批处理?(如果是这样的话,你需要创建大小为1的批处理维度,但这不会训练得很好,你需要大量的数据,而不是单个示例)。

所以,A.shape 必须是 (1, 257, 356, 1),第一个1是批处理大小,最后一个是通道数。其他两个数字是“图像”的空间维度。

而且你的 input_shape 不应包括批处理大小:input_shape=(257, 356, 1)

英文:

You are missing the batch size in your model.

The input shapes for 2D convolutions are (batch, spatial1, spatial2, channels).

I don't know the structure of your data, but it seems you don't have a batch? (If this is true you need to create the batch dimension with size 1, but this will not train well at all, you need huge amounts of data, not a single example).

So, A.shape must be (1, 257,356, 1), being the first 1 the batch size, and the last the number of channels. The other two numbers are the spatial dimensions of the "image".

And your input_shape must not include the batch size: input_shape=(257,356,1).

答案3

得分: 0

查看Keras官方文档页面上的类似VGG的卷积神经网络示例。就像@Daniel提到的那样,input_shape必须定义为(样本数, 高度, 宽度, 通道数)的元组。

作为参考,假设你有500个样本,你的输入数据应该如下所示:

x_train = np.random.random((500, 257, 356, 1))
print(x_train.shape)
(500, 257, 356, 1)
英文:

Look out for VGG-like convnet example on keras official documentation page.
Like @Daniel mentioned, the input_shape must be defined as tuple of (number_of_examples, height, width, channel).

For reference, let's say you have 500 samples, your input data should look like this:

x_train = np.random.random((500, 257, 356, 1))
print(x_train.shape)
(500, 257, 356, 1)

huangapple
  • 本文由 发表于 2020年1月3日 20:38:14
  • 转载请务必保留本文链接:https://go.coder-hub.com/59578786.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定