英文:
image preprocessing methods that can be used for identification of industrial parts name (stuck or engraved) on the surface?
问题
我正在进行一个项目,在这个项目中,我的任务是通过附在机器部件上的标签上的零件号或刻在表面上的零件号来识别机器零件。以下是标签和刻在零件上的一个示例。
我的任务是识别9位或10位的字母数字号码(第一张图片中的03C 997 032 D和第二张图片中的357 955 531)。这似乎是一个简单的任务,但我在区分图像中的有用信息和其他部分方面遇到了问题,即这两张图像中都有许多其他数字和字符,而我只想关注提到的数字。我尝试了很多方法,但目前还没有成功。是否有人知道图像预处理方法或任何可以应用以获得所需结果的ML/DL模型?
提前感谢!
JD
英文:
I am working on a project where my task is to identify machine part by its part number written on label attached to it or engraved on its surface. One such example of label and engraved part is shown in below figures.
My task is to recognise 9 or 10 alphanumerical number (03C 997 032 D in 1st image and 357 955 531 in 2nd image). This seems to be easy task however I am facing problem in distinguishing between useful information in the image and rest of the part i.e. there are many other numbers and characters in both image and I want to focus on only mentioned numbers. I tried many things but no success as of now. Does anyone know the image pre processing methods or any ML/DL model which I should apply to get desired result?
Thanks in advance!
JD
答案1
得分: 1
你可以使用OCR从图像中获取所有字符,然后使用正则表达式来提取所需的模式。
英文:
You can use OCR to the get all characters from the image and then use regular expressions to extract the desired patterns.
答案2
得分: 1
你可以使用OCR方法,比如Tesseract。
也许你想在运行文本识别系统之前清理图像,通过执行一些滤波操作来去除噪声/去除额外信息,比如:
- 转换为灰度(颜色不相关,不是吗?)
- 裁剪到感兴趣的区域
- Canny滤波器
一个很好的起点可以是以下教程之一:
-
OpenCV与Tesseract的OCR(Python API)
-
使用OpenCV识别文本/数字(C++ API)
英文:
You can use OCR method, like Tesseract.
Maybe, you want to clean the images before running the text-recognition system, by performing some filtering to remove noise / remove extra information, such as:
- Convert to gray scale (colors are not relevant, aren't them?)
- Crop to region of interest
- Canny Filter
A good start can be one of this tutorial:
-
OpenCV OCR with Tesseract (Python API)
-
Recognizing text/number with OpenCV (C++ API)
通过集体智慧和协作来改善编程学习和解决问题的方式。致力于成为全球开发者共同参与的知识库,让每个人都能够通过互相帮助和分享经验来进步。
评论