创建每个 n 个元素的相同时间戳。

huangapple go评论84阅读模式
英文:

Create identical timestamp for each n elements

问题

I have a function which creates an artificial list of 100,000 timestamps going back in time. The frequency is 2 minutes.

datelist = pd.date_range(end = pd.datetime.today(), periods=100000, freq='2min00S').tolist()

The result looks like:

[Timestamp('2018-12-03 19:48:35.874707', freq='2T'),
 Timestamp('2018-12-03 19:50:35.874707', freq='2T'),
 Timestamp('2018-12-03 19:52:35.874707', freq='2T'),
 Timestamp('2018-12-03 19:54:35.874707', freq='2T'),
 Timestamp('2018-12-03 19:56:35.874707', freq='2T'),
 Timestamp('2018-12-03 19:58:35.874707', freq='2T'),
 Timestamp('2018-12-03 20:00:35.874707', freq='2T'),
 Timestamp('2018-12-03 20:02:35.874707', freq='2T'),
 Timestamp('2018-12-03 20:04:35.874707', freq='2T'),
 Timestamp('2018-12-03 20:06:35.874707', freq='2T'),
...]

I would like to create an identical timestamp for each 50 elements.
At the moment I have a different timestamp for each 100,000 elements. Any idea to do that?

In other words: The frequency of 2 minutes remains the same but the timestamp will be identical for each 50 elements.

This final list will be integrated as a new column into a pandas dataframe.

```data_pd['Timestamp'] = datelist```


<details>
<summary>英文:</summary>

I have a function which creates an artificial list of 100.000 timestamps going back in time. The frequency is 2 minutes. 

```datelist = pd.date_range(end = pd.datetime.today(), periods=100000, freq=&#39;2min00S&#39;).tolist()```

The result looks like:

[Timestamp('2018-12-03 19:48:35.874707', freq='2T'),
Timestamp('2018-12-03 19:50:35.874707', freq='2T'),
Timestamp('2018-12-03 19:52:35.874707', freq='2T'),
Timestamp('2018-12-03 19:54:35.874707', freq='2T'),
Timestamp('2018-12-03 19:56:35.874707', freq='2T'),
Timestamp('2018-12-03 19:58:35.874707', freq='2T'),
Timestamp('2018-12-03 20:00:35.874707', freq='2T'),
Timestamp('2018-12-03 20:02:35.874707', freq='2T'),
Timestamp('2018-12-03 20:04:35.874707', freq='2T'),
Timestamp('2018-12-03 20:06:35.874707', freq='2T'),
...]


I would like to create an identical timestamp for each 50 elements. 
At the moment I have a different timestamp for each 100.000 elements. Any idea to do that?

In other words: The frequency of 2 minutes remains the same but the timestamp will be identical for each 50 elements. 


This final list will be integrated as new column into a pandas dataframe. 

```data_pd[&#39;Timestamp&#39;] = datelist```



</details>


# 答案1
**得分**: 0

我相信你需要在删除 `tolist()` 后使用整数除法 `50` 通过 `numpy.arange` 的数组对 `DatetimeIndex` 进行索引:

```python
dates = pd.date_range(end=pd.datetime.today(), periods=100000, freq='2min00S')
data_pd['Timestamp'] = dates[np.arange(len(data_pd)) // 50]

示例:(每5个值)

dates = pd.date_range(end=pd.datetime.today(), periods=100000, freq='2min00S')
data_pd = pd.DataFrame({'a': range(10)})
data_pd['Timestamp'] = dates[np.arange(len(data_pd)) // 5]

print(data_pd)
   a                  Timestamp
0  0 2019-08-17 13:20:41.002125
1  1 2019-08-17 13:20:41.002125
2  2 2019-08-17 13:20:41.002125
3  3 2019-08-17 13:20:41.002125
4  4 2019-08-17 13:20:41.002125
5  5 2019-08-17 13:22:41.002125
6  6 2019-08-17 13:22:41.002125
7  7 2019-08-17 13:22:41.002125
8  8 2019-08-17 13:22:41.002125
9  9 2019-08-17 13:22:41.002125
英文:

I believe you need indexing DatetimeIndex after removed tolist() by array with integer division of 50 by numpy.arange by lenght of DataFrame:

dates = pd.date_range(end = pd.datetime.today(), periods=100000, freq=&#39;2min00S&#39;)
data_pd[&#39;Timestamp&#39;] = dates[np.arange(len(data_pd)) // 50]

Sample: (each 5 values)

dates = pd.date_range(end = pd.datetime.today(), periods=100000, freq=&#39;2min00S&#39;)
data_pd = pd.DataFrame({&#39;a&#39;:range(10)})
data_pd[&#39;Timestamp&#39;] = dates[np.arange(len(data_pd)) // 5]

print (data_pd)
   a                  Timestamp
0  0 2019-08-17 13:20:41.002125
1  1 2019-08-17 13:20:41.002125
2  2 2019-08-17 13:20:41.002125
3  3 2019-08-17 13:20:41.002125
4  4 2019-08-17 13:20:41.002125
5  5 2019-08-17 13:22:41.002125
6  6 2019-08-17 13:22:41.002125
7  7 2019-08-17 13:22:41.002125
8  8 2019-08-17 13:22:41.002125
9  9 2019-08-17 13:22:41.002125

答案2

得分: 0

end_time = pd.datetime.today()
end_date = end_time.date()
datelist = pd.date_range(end=end_date, periods=100000, freq='2min00S').tolist()

将end_time转换为日期,而不是使用带有小数秒的时间。这将始终给您相同的时间

[Timestamp('2019-08-17 02:42:00', freq='2T'),
Timestamp('2019-08-17 02:44:00', freq='2T'),
Timestamp('2019-08-17 02:46:00', freq='2T'),
Timestamp('2019-08-17 02:48:00', freq='2T'),
Timestamp('2019-08-17 02:50:00', freq='2T'),
Timestamp('2019-08-17 02:52:00', freq='2T'),
Timestamp('2019-08-17 02:54:00', freq='2T'),
Timestamp('2019-08-17 02:56:00', freq='2T'),
Timestamp('2019-08-17 02:58:00', freq='2T'),
Timestamp('2019-08-17 03:00:00', freq='2T'),
Timestamp('2019-08-17 03:02:00', freq='2T'),
Timestamp('2019-08-17 03:04:00', freq='2T'),
Timestamp('2019-08-17 03:06:00', freq='2T'),

英文:
end_time = pd.datetime.today()
end_date = end_time.date()
datelist = pd.date_range(end = end_date, periods=100000, freq=&#39;2min00S&#39;).tolist()

convert the end_time to date instead of using a time with decimal seconds. This will always gives you the same time

[Timestamp(&#39;2019-08-17 02:42:00&#39;, freq=&#39;2T&#39;),
 Timestamp(&#39;2019-08-17 02:44:00&#39;, freq=&#39;2T&#39;),
 Timestamp(&#39;2019-08-17 02:46:00&#39;, freq=&#39;2T&#39;),
 Timestamp(&#39;2019-08-17 02:48:00&#39;, freq=&#39;2T&#39;),
 Timestamp(&#39;2019-08-17 02:50:00&#39;, freq=&#39;2T&#39;),
 Timestamp(&#39;2019-08-17 02:52:00&#39;, freq=&#39;2T&#39;),
 Timestamp(&#39;2019-08-17 02:54:00&#39;, freq=&#39;2T&#39;),
 Timestamp(&#39;2019-08-17 02:56:00&#39;, freq=&#39;2T&#39;),
 Timestamp(&#39;2019-08-17 02:58:00&#39;, freq=&#39;2T&#39;),
 Timestamp(&#39;2019-08-17 03:00:00&#39;, freq=&#39;2T&#39;),
 Timestamp(&#39;2019-08-17 03:02:00&#39;, freq=&#39;2T&#39;),
 Timestamp(&#39;2019-08-17 03:04:00&#39;, freq=&#39;2T&#39;),
 Timestamp(&#39;2019-08-17 03:06:00&#39;, freq=&#39;2T&#39;),

huangapple
  • 本文由 发表于 2020年1月3日 17:27:41
  • 转载请务必保留本文链接:https://go.coder-hub.com/59575998.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定