如何根据列中定义的起始和结束值创建数据帧的行序列

huangapple go评论78阅读模式
英文:

How to create a sequence of rows of Data Frame based on starting and ending value defined by columns

问题

我有以下的数据框:

example_df = pd.DataFrame({'id': {0: 0, 1: 1, 2: 2, 3: 3, 4: 4},
 'seq_start': {0: 0.0, 1: 2800.0, 2: 6400.0, 3: 8400.0, 4: 9800.0},
 'seq_end': {0: 1400.0, 1: 4700.0, 2: 8400.0, 3: 9800.0, 4: 11400.0}})

我想要获得一个数据框,其中包含从 example_df['seq_start']example_df['seq_end'] 的值序列,以便稍后在连接中使用新创建的列。

所以期望的输出如下:

out_df = pd.DataFrame({'id': np.concatenate([[0] * 15, [1] * 20, [2] * 21]),
                       'expected_output': np.concatenate([np.arange(0, 1500, 100), 
                                                          np.arange(2800, 4800, 100),
                                                          np.arange(6400, 8500, 100)])})

如何处理这个问题?

英文:

I've got a following Data Frame:

example_df = pd.DataFrame({'id': {0: 0, 1: 1, 2: 2, 3: 3, 4: 4},
 'seq_start': {0: 0.0, 1: 2800.0, 2: 6400.0, 3: 8400.0, 4: 9800.0},
 'seq_end': {0: 1400.0, 1: 4700.0, 2: 8400.0, 3: 9800.0, 4: 11400.0}})

I'd like to obtain a Data Frame that has a sequences of values from example_df['seq_start'] to example_df['seq_end'] so that I could later use newly created column in a join.

So the expected output would look like below:

out_df = pd.DataFrame({'id': np.concatenate([[0] * 15, [1] * 20, [2] * 21]),
                       'expected_output': np.concatenate([np.arange(0, 1500, 100), 
                                                          np.arange(2800, 4800, 100),
                                                          np.arange(6400, 8500, 100)])})

    id  expected_output
0    0                0
1    0              100
2    0              200
3    0              300
4    0              400
5    0              500
          ...
12   0             1200
13   0             1300
14   0             1400
15   1             2800
16   1             2900
17   1             3000
          ...

31   1             4400
32   1             4500
33   1             4600
34   1             4700
35   2             6400
36   2             6500
37   2             6600
          ...

54   2             8300
55   2             8400

How can I approach this?

答案1

得分: 2

使用 pandas.DataFrame.explode

def listify(x, step=100, right_closed=True):
    lower, upper = sorted(x)
    return range(lower, upper+step*right_closed, step)

example_df['expected'] = example_df[['seq_end', 'seq_start']].astype(int).apply(listify, 1)
new_df = example_df[['id','expected']].explode('expected')
print(new_df)

输出:

    id expected
0    0        0
0    0      100
0    0      200
0    0      300
0    0      400
...
4    4    11000
4    4    11100
4    4    11200
4    4    11300
4    4    11400
英文:

Using pandas.DataFrame.explode:

def listify(x, step=100, right_closed=True):
    lower, upper = sorted(x)
    return range(lower, upper+step*right_closed, step)

example_df['expected'] = example_df[['seq_end', 'seq_start']].astype(int).apply(listify, 1)
new_df = example_df[['id','expected']].explode('expected')
print(new_df)

Output:

    id expected
0    0        0
0    0      100
0    0      200
0    0      300
0    0      400
..  ..      ...
4    4    11000
4    4    11100
4    4    11200
4    4    11300
4    4    11400

huangapple
  • 本文由 发表于 2020年1月3日 15:43:10
  • 转载请务必保留本文链接:https://go.coder-hub.com/59574875.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定