英文:
Take FFT of an Image in Google Go
问题
在Google Go中如何对图像进行FFT变换?
Go DSP库(github.com/mjibson/go-dsp/fft)提供了一个用于进行2D FFT变换的函数,其签名如下:
func FFT2Real(x [][]float64) [][]complex128
如何将图像从标准的Go图像类型转换为float64类型?这种方法正确吗?
这里是文档链接。
英文:
How do you take the FFT of an image in Google Go?
The Go DSP library (github.com/mjibson/go-dsp/fft) has a function for a 2D FFT with the following signature:
func FFT2Real(x [][]float64) [][]complex128
How do I convert an image from the standard go image types to float64? Is this the right approach?
Here is a link to the documentation.
答案1
得分: 4
你有两个选项,都涉及复制像素。你可以使用Image
接口提供的方法,即At(x,y)
,也可以将图像断言为image
包提供的图像类型之一,并直接访问Pix
属性。
由于你很可能使用的是灰度图像,你可以轻松地将图像断言为*image.Gray
类型,并直接访问像素,但出于抽象的考虑,我在示例中没有这样做:
inImage, _, err := image.Decode(inFile)
// 错误检查
bounds := inImage.Bounds()
realPixels := make([][]float64, bounds.Dy())
for y := 0; y < bounds.Dy(); y++ {
realPixels[y] = make([]float64, bounds.Dx())
for x := 0; x < bounds.Dx(); x++ {
r, _, _, _ := inImage.At(x, y).RGBA()
realPixels[y][x] = float64(r)
}
}
这样,你就可以读取图像inImage
的所有像素,并将它们作为float64
值存储在二维切片中,准备好被fft.FFT2Real
处理:
// 对realPixels应用离散傅里叶变换。
coeffs := fft.FFT2Real(realPixels)
// 使用逆傅里叶变换将fft值转换回原始图像。
coeffs = fft.IFFT2(coeffs)
// 将所有内容写入新图像。
outImage := image.NewGray(bounds)
for y := 0; y < bounds.Dy(); y++ {
for x := 0; x < bounds.Dx(); x++ {
px := uint8(cmplx.Abs(coeffs[y][x]))
outImage.SetGray(x, y, color.Gray{px})
}
}
err = png.Encode(outFile, outImage)
在上面的代码中,我对存储在realPixels
中的像素应用了FFT,然后为了查看是否有效,对结果应用了逆FFT。预期结果是原始图像。
完整的示例可以在这里找到。
英文:
You have two options, both involve copying the pixels. You can either use the methods provided by the Image
interface, namely At(x,y)
or you can assert the image to one of the image types provided by the image
packet and access the Pix
attribute directly.
Since you will most likely be using a Gray image, you could easily assert your image to type *image.Gray
and access the pixels directly but for the sake of abstraction I did not in my example:
inImage, _, err := image.Decode(inFile)
// error checking
bounds := inImage.Bounds()
realPixels := make([][]float64, bounds.Dy())
for y := 0; y < bounds.Dy(); y++ {
realPixels[y] = make([]float64, bounds.Dx())
for x := 0; x < bounds.Dx(); x++ {
r, _, _, _ := inImage.At(x, y).RGBA()
realPixels[y][x] = float64(r)
}
}
This way you read all the pixels of your image inImage
and store them as float64
values in a two-dimensional slice, ready to be processed by fft.FFT2Real
:
// apply discrete fourier transform on realPixels.
coeffs := fft.FFT2Real(realPixels)
// use inverse fourier transform to transform fft
// values back to the original image.
coeffs = fft.IFFT2(coeffs)
// write everything to a new image
outImage := image.NewGray(bounds)
for y := 0; y < bounds.Dy(); y++ {
for x := 0; x < bounds.Dx(); x++ {
px := uint8(cmplx.Abs(coeffs[y][x]))
outImage.SetGray(x, y, color.Gray{px})
}
}
err = png.Encode(outFile, outImage)
In the code above I applied FFT on the pixels stored in realPixels
and then, to see whether it worked, used inverse FFT on the result. The expected result is the original image.
A full example can be found here.
通过集体智慧和协作来改善编程学习和解决问题的方式。致力于成为全球开发者共同参与的知识库,让每个人都能够通过互相帮助和分享经验来进步。
评论